Means and Divided Differences

ALAN HORWITZ

Department of Mathematics, Pennsylvania State University,
25 Yearsley Mill Road, Media, Pennsylvania 19063

Submitted by J. L. Brenner

Received November 23, 1992

DEDICATED TO SALLY WILLIAMS

1. Introduction

Let $f \in C^{2n}(0, \infty)$, with $f^{(2n)}(x) \neq 0$ on $(0, \infty)$. For a and b positive real numbers with $a \neq b$, let $f[b^{[n]}, a^{[n]}]$ denote the $(2n - 1)$st order divided difference of f with n occurrences of b and n occurrences of a. For example, $f[b, a]$ is the usual difference quotient $(f(b) - f(a))/(b - a)$, while

$$f[b^{[2]}, a^{[2]}] = f[b, b, a, a] = \frac{f''(b) - 2f[b, a] + f'(a)}{(b - a)^2}.$$

In general, divided differences at distinct points are defined inductively by

$$f[x_j, \ldots, x_0] = \frac{f[x_j, \ldots, x_i] - f[x_{j-1}, \ldots, x_0]}{x_j - x_0} \quad \text{with } f[x_0] = f(x_0).$$

For suitably differentiable f we can allow some of the nodes to coalesce, in which case certain derivatives are involved. In particular, for $f \in C^{2n-1}[a, b], f[x_{2n-2}, \ldots, x_0]$ is a continuous function on $[a, b]^n$ (see [IK]). For the precise expansion of $f[b^{[n]}, a^{[n]}]$ in terms of function and derivative values of f at a and b, see Lemma 1 below.

Now by the mean-value theorem for divided differences (see [IK, p. 252, Corollary 2]), there is at least one point c in (a, b) such that $f[b^{[n]}, a^{[n]}] = f^{(2n-1)}(c)/(2n - 1)!$. (Technically we only know from the cited reference that $c \in [a, b]$. However, for $f^{(2n-1)}$ strictly monotone, it follows
that \(f[x_0, \ldots, x_{2n-1}] \) is a strictly monotone function of its arguments. If \(c = a \), say, then \(f^{(2n-1)}(a)/(2n - 1)! = f[b^{[n]}, a^{[n]}] > f[a^{[n]}, a^{[n]}] = f^{(2n-1)}(a)/(2n - 1)! \), a contradiction. Similarly we cannot have \(c = b \).

Since \(f^{(2n-1)} \) is strictly monotone, such a \(c \) is unique, and this defines a

mean \(M_f(a, b) \) in \(a \) and \(b \). Hence

\[
M_f(a, b) = (f^{(2n-1)})^{-1}((2n - 1)!f[b^{[n]}, a^{[n]}]).
\]

(1)

Of course \(M_f \) depends on \(n \) as well, but we suppress this dependence in our notation. The case \(n = 1 \) was considered by Stolarsky [S] and Mays [M], in which case \(M_f(a, b) = (f')^{-1}((f(b) - f(a))/(b - a)) \).

The means we consider in this paper are all symmetric, i.e., \(M_f(a, b) = M_f(b, a) \). One could also produce non-symmetric means by considering \((f^m)^{-1}(r!f[b^{[m]}, a^{[m]}])\), where \(m \neq n \) and \(r = m + n - 1 \). For general \(n \) it also follows that if \(f(x) = x^p \), then \(M_f \) is a homogeneous mean—i.e., \(M_f(ka, kb) = kM_f(a, b) \), and we denote \(M_f \) by \(M_p \). For \(p \in \{0, 1, \ldots, 2n - 1\} \), \(M_p \) must be defined by taking a limit since in that case \(f^{(2n-1)} \) is not strictly monotonic. Equivalently, one could define \(M_p = M_f \), where \(f(x) = x^p \log x \), when \(p \in \{0, 1, \ldots, 2n - 1\} \).

In Section 2 we give a useful integral representation for \(M_f \) derived using the Peano Kernel Theorem (Theorem 1). In Section 3 we examine the special cases \(p = 2n, -1, \) and \((2n - 1)/2 \). We prove that \(M_{2n}(a, b) = (a + b)/2 \), the arithmetic mean (Theorem 2), \(M_{-1}(a, b) = \sqrt{ab} \), the geometric mean (Theorem 3), and \(M_{(2n-1)/2}(a, b) = ((\sqrt{a} + \sqrt{b})/2)^2 \) (Theorem 4). For \(n = 1 \) it was noted by Mays that \((f')^{-1}((f(b) - f(a))/(b - a)) \)

never gives the harmonic mean. We prove that this is the case for all \(n \) (Theorem 7), using a series representation for \(M_p \) (Corollary 1 to Theorem 5), in Section 4.

Finally, it is interesting to examine the behavior of \(M_f \) as \(n \) approaches \(\infty \). In Section 5 we prove that \(M_p(a, b) \to \sqrt{ab} \) for any fixed \(p \) (Theorem 12). For a function such as \(e^x \), however, \(M_f(a, b) \to (a + b)/2 \) (Theorem 13). We do not know the limiting behavior in general for \(f(x) \neq x^p \).

2. Integral Representation

First we prove a formula which expresses \(f[b^{[n]}, a^{[n]}] \) as a linear combination of the values of \(f \) and its first \(n - 1 \) derivatives at \(a \) and \(b \).

Lemma 1.

\[
f[b^{[n]}, a^{[n]}] = \frac{1}{(n - 1)!^2} \frac{1}{(b - a)^{2n-1}} \sum_{k=0}^{n-1} \binom{n - 1}{k} \times (2n - 2 - k)!(-1)^{n-1-k} (f^{(k)}(b) - (-1)^k f^{(k)}(a))(b - a)^k.
\]
Proof.

\[f[b^{n+1}, a^{n+1}] = \frac{1}{(n!)^2} \frac{\partial^n}{\partial a^n} \left(\frac{\partial^n}{\partial b^n} f[b, a] \right) \]

(see [IK, p. 254, Corollary 7]). Now

\[
\frac{\partial^n}{\partial b^n} f[b, a] = \frac{\partial^n}{\partial b^n} \left(\frac{f(b) - f(a)}{b - a} \right)
\]

\[= \sum_{k=0}^{n} \binom{n}{k} (f(b) - f(a))^k \left(\frac{1}{b - a} \right)^{(n-k)} \quad \text{(by Leibniz' rule)} \]

\[= \sum_{k=1}^{n} \binom{n}{k} f^{(k)}(b)(-1)^{n-k}(n-k)!(b - a)^{-n+k-1} + \frac{f(b) - f(a)}{(b - a)^{n+1}} (-1)^n n! . \]

Hence

\[\frac{\partial^n}{\partial a^n} \left(\frac{\partial^n}{\partial b^n} f[b, a] \right) = \sum_{k=1}^{n} \binom{n}{k} f^{(k)}(b)(-1)^{n-k}(n-k)!(b - a)^{-2n+k-1} \]

\[\times (2n-k) \cdots (n-k+1) - (-1)^n n! \sum_{k=1}^{n} \binom{n}{k} f^{(k)}(a) \]

\[\times (b - a)^{-2n+k-1}(2n-k) \cdots (n+1) \]

\[+ (-1)^n n! (f(b) - f(a))(b - a)^{-2n-1}(2n) \cdots (n+1) \]

\[= \frac{1}{(b - a)^{2n+1}} \sum_{k=0}^{n} \binom{n}{k} (2n-k)! (-1)^{a-k} \]

\[\times (f^{(k)}(b) - (-1)^kf^{(k)}(a))(b - a)^{k} . \]

Replacing \(n \) by \(n - 1 \) finishes the proof of Lemma 1.

Theorem 1. For any \(f \in C^{2n-1}[a, b] \),

\[f[b^n, a^{n}] = \frac{1}{(n-1)!^2 (b - a)^{2n-1}} \int_a^b f^{(2n-1)}(t)((b - t)(t - a))^{n-1} dt . \]

Proof. Let \(L \) be the linear functional defined by \(L(f) = f[b^n, a^{n}] \) for fixed \(a < b \). Then \(L \) annihilates \(\pi_{2n-2} \), the polynomials of degree \(\leq 2n - 2 \). Hence by the Peano Kernel Theorem (see [D])

\[L(f) = \int_a^b f^{(2n-1)}(t) K_n(t) \, dt \quad \text{for } f \in C^{2n-1}[a, b], \]

(2)

where \(K_n(t) = (1/(2n-2)!) L_n[(x-t)^{2n-2}] \), with \((x-t)^{2n-2} = (x-t)^{2n-2}\) for \(t \leq x \) and \(= 0 \) for \(t > x \).

Applying \(L \) to the function \((x-t)^{2n-2}\) gives, by Lemma 1,

\[
\frac{1}{(n-1)!^2 (b-a)^{2n-1}} \times \sum_{k=0}^{n-1} \binom{n-1}{k} (2n-2-k)! (-1)^{n-1-k} \\
\times (b-t)^{2n-2-k}(2n-2) \cdots (2n-k-1)(b-a)^k
= \frac{(2n-2)!}{(n-1)!^2 (b-a)^{2n-1}} \sum_{k=0}^{n-1} \binom{n-1}{k} (-1)^{n-1-k} \\
\times (b-t)^{2n-2-k}(b-a)^k
= \frac{(-1)^{n-1}(2n-2)!}{(n-1)!^2 (b-a)^{2n-1}} \\
\times (b-t)^{2n-2} \sum_{k=0}^{n-1} \binom{n-1}{k} (-1)^k \left(\frac{b-a}{b-t} \right)^k
\]

(by the Binomial Theorem).

The theorem then follows from (2).

Remark. Lemma 1 is of interest in its own right since it gives an explicit formula for computing the means \(M_f \), assuming one can compute \((f^{(2n-1)})^{-1} \). Theorem 1 can be proven more easily, however, without Lemma 1. By [OS, p. 11, formula (9)], \(f[b^{[n]}, a^{[n]}] = (1/(n-1)!^2) \int_0^1 f^{(2n-1)} \left((1-t)a + tb\right)^{(n-1)} dt \). Letting \(u = (1-t)a + tb \) gives Theorem 1.

It is important to note that by (1) and Theorem 1, the means \(M_f \) can now be written as

\[M_f(a, b) = g^{-1} \left(\int_a^b g(t) E_n(t) \, dt \right); \]

(3)

where \(g(t) = f^{(2n-1)}(t) \) and \(E_n(t) = ((2n-1)!/(n-1)!^2 (b-a)^{2n-1}) \\
\times ((b-t)(t-a))^{n-1} \).

Since \(\int_a^b E_n(t) \, dt = 1 \), this takes the form \(g^{-1} (\int_a^b g(t) \, d\mu(t)) \), where \(d\mu \) is a probability measure. When \(\mu \) is concentrated at a finite set of points, one obtains a class of means discussed in [HLP] (See also the discussion in [M].)
It follows easily from (3) that the means M_p are homogeneous. In the next section we examine M_p for certain values of p.

3. Special Cases

Theorem 2. $M_{2n}(a, b) = (a + b)/2$.

Proof. If $f(x) = x^m$, m a positive integer $\geq n$, then $f[x_0, \ldots, x_{m-1}] = x_0 + \cdots + x_{m-1} = (n-1)^{m-1} f[x_0, \ldots, x_{n-1}]$ (see [OS, p. 3]). For $m = 2n$, $x_0 = \cdots = x_{n-1} = a$, and $x_n = \cdots = x_{2n-1} = b$, $f[b^{n-1}, a^{n-1}] = n(a + b)$. Thus, by (1), $M_f(a, b) = (f^{(2n-1)})^{-1}[(2n - 1)! f[b^{n-1}, a^{n-1}] = (1/(2n)) (2n - 1)! n(a + b) = (a + b)/2.$

Theorem 3. $M_{-1}(a, b) = \sqrt{ab}$.

Proof. If $f(x) = 1/x$, then it is easy to prove, using induction, that $f[x_0, \ldots, x_n] = (-1)^n/(x_0 \cdots x_n)$ (or see [OS, p. 11, formula (4)]), and we omit the proof. It follows, then, that $f[b^{n-1}, a^{n-1}] = (-1)^n/b^n a^n$. Since $f^{(2n-1)}(x) = (-1)^{2n-1}(2n - 1)!/x^{2n}$, $M_f(a, b) = (f^{(2n-1)})^{-1}[(2n - 1)! f[b^{n-1}, a^{n-1}] = (b^n, a^n)^{1/2n} = \sqrt{ab}$.

Remark. It is interesting to note that the function $f(x) = 1/x$ gives the same mean, the geometric mean, for all n. A similar phenomenon occurs for $1/x$ in [H1], [H2], where the mean in that case is the harmonic mean.

One could also prove Theorems 2 and 3 using (3), but the proofs given above are easier. For the case $p = (2n - 1)/n$, however, there is no simple formula for the divided differences of x^p. Hence we use the integral representation in (3). First we need the following lemma.

Lemma 2. $\int_a^b [(b - t)(t - a)]^{n-1} t^{-n+1/2} \, dt = (2^{2n-1}/(2n - 1)! (n - 1)! (\sqrt{b} - \sqrt{a})^{2n-1}$.

Proof. We claim

$$p(x) \equiv \int_1^x [(x^2 - t)(t - 1)]^{n-1} t^{-n+1/2} \, dt$$

is a polynomial in x of degree $\leq 2n - 1$.

To prove (4), first

$$(x^2 - t)^{n-1}(t - 1)^{n-1} = \left(\sum_{k=0}^{n-1} \binom{n-1}{k} (-1)^{n-1-k} t^{n-1-k} \right) \left(\sum_{j=0}^{n-1} \binom{n-1}{j} (-1)^{n-1-j} t^j \right).$$
Then the highest power of \(x \) occurring in \(p \) is obtained by taking \(j = n - 1 \) in the second summation. This yields

\[
\left(\sum_{k=0}^{n-1} \binom{n-1}{k} x^{2k} (-1)^{n-1-k} \right) \left(\int_1^x t^{n-1-k} t^{n-1} t^{-n+1/2} dt \right) = \sum_{k=0}^{n-1} \binom{n-1}{k} x^{2k} (-1)^{n-1-k} x^{2n-2k-1} = \left(\sum_{k=0}^{n-1} \binom{n-1}{k} (-1)^{n-1-k} \right) x^{2n-1}.
\]

Other values of \(j \) in the second summation yield lower powers of \(x \) in \(p(x) \). Since \(\int_1^x t^{n-1-k} t^{-n+1/2} dt = (x^{j-2k+1} - 1)/(j - k + \frac{1}{2}) \), \(p \) is a polynomial in \(x \). This proves (4). Now \(p(x) = q(x^2) \), where

\[
q(u) = \int_1^u [(u - t)(t - 1)]^{n-1} t^{-n+1/2} dt.
\]

We claim

\[
q^{(j)}(1) = 0 \quad \text{for } j = 0, 1, \ldots, 2n - 2.
\]

To prove (6), by (5), \(q^{(j)}(u) = (n - 1) \cdots (n - j) \int_1^u (u - t)^{n-1-j} (t - 1)^{n-1} t^{-n+1/2} dt \) for \(j = 1, \ldots, n - 1 \). This follows from the formula \((\partial/\partial u) \int_a^u f(t) K(u, t) dt = \int_a^u f(t) (\partial/\partial u) (K(u, t)) dt + K(u, u) \). Hence \(q^{(j)}(1) = 0 \) for \(j = 0, 1, \ldots, n - 1 \). Now \(q^{(n-1)}(u) = (n - 1)! \int_1^u (t - 1)^{n-1} t^{-n+1/2} dt \), and hence \(q^{(n)}(u) = (n - 1)! (u - 1)^{n-1} u^{-n+1/2} \Rightarrow q^{(n)}(1) = 0 \), and \(q^{(j)}(1) = 0 \) for \(j = n + 1, \ldots, 2n - 2 \) by Leibniz' rule. This proves (6).

By the Chain Rule, \(p^{(j)}(x) = \sum_{k=0}^j \alpha_k(x) q^{(k)}(x^2) \), where the \(\alpha_k \) are monomials in \(x \). Equation (6) then implies that \(p^{(j)}(1) = 0 \) for \(j = 0, 1, \ldots, 2n - 2 \). Since \(p \in \pi_{2n-1} \) (by (4)), \(p(x) = C_n(x - 1)^{2n-1} \) for some constant \(C_n \). Now let \(h(b, a) = \int_a^b [(b - t)(t - a)]^{n-1} t^{-n+1/2} dt \), the integral in the lemma. Then \(h(ka, kb) = \int_{ka}^{kb} [(kb - t)(t - ka)]^{n-1} t^{-n+1/2} dt = k^{n-1/2} \int_a^b [(b - u)(u - a)]^{n-1} u^{-n+1/2} du \) (letting \(u = t/k \) \(k^{n-1/2} h(b, a) \). Now \(h(b, 1) = p(\sqrt{b}) \) (see (4)) \(= C_n(\sqrt{b} - 1)^{2n-1} \), and thus \(h(b, a) = h(a \cdot (b/a), a \cdot 1) = a^{n-1/2} C_n(\sqrt{b}/a - 1)^{2n-1} = C_n(\sqrt{b} - \sqrt{a})^{2n-1} \). It remains to determine the constant \(C_n \). So let \(b = 1 \) and \(a = 0 \) to get \(C_n = \int_0^1 (1 - t)^{-n-1/2} dt = B(\frac{1}{2}, n) = B(n, \frac{1}{2}) = 2^{2n-1} B(n, n) \) (see [3W]) \(= 2^{2n-1}(n - 1)!/(2n - 1)! \), where \(B \) is the beta function. This completes the proof of Lemma 2.

Theorem 4. \(M_{(2n-1)/2}(a, b) = ((\sqrt{b} + \sqrt{a})/2)^2 \).

Proof. Let \(f(t) = t^{(2n-1)/2} \Rightarrow f^{(2n-1)}(t) = (\text{constant}) t^{-n+1/2} \). By (3),
\[M_{12n-1}^{1/2}(a, b) = \left(\frac{(2n - 1)!}{(n - 1)!^2 (b - a)^{2n-1}} \int_a^b ((b - t)(t - a))^{n-1} t^{n+1/2} dt \right)^{1/(n+1/2)}. \]

By Lemma 2 we get

\[\left(2^{2n-1} \left(\frac{\sqrt{b} - \sqrt{a}}{b - a} \right)^{2n-1} \right)^{1/(n+1/2)} = \left(\frac{\sqrt{b} + \sqrt{a}}{2} \right)^2. \]

4. Series Expansion and Some Comparisons

Theorem 5. Let \(f \) be analytic with \(f^{(2n)}(x) \neq 0 \) in \((0, \infty)\) for some positive integer \(n \). For fixed \(a < x \), let \(M(x) = M_f(a, x) \). Also, let \(g(x) = f^{(2n-1)}(x) \) with \(a_j = g^{(j)}(a)/j! \). Then

(i) \(M'(a) = \frac{1}{2} \).

(ii) \(M''(a) = \frac{1}{2(2n + 1) a_1} \).

(iii) \(M'''(a) = \frac{-6a_3^3 + 9a_2 a_4}{4(2n + 1) a_1^3} \).

(iv) \(M^{(iv)}(a) = \frac{3a_3^2 a_2 (2n + 1)(4n + 7) - 9a_3 a_2 a_4 (2n + 1)(2n + 3) + a_3^2 (2n + 3)(8n + 3)}{2a_1^3 (2n + 3)(2n + 1)^2} \).

Proof. By (3),

\[M(x) = g^{-1} \left(\int_a^x g(t) E_n(t) \, dt \right), \]

\[E_n(t) = \frac{(2n - 1)!}{(n - 1)!^2 (x - a)^{2n-1}} ((x - t)(t - a))^{n-1}. \]

Hence

\[g(M(x)) = \frac{(2n - 1)!}{(n - 1)!^2 (x - a)^{2n-1}} \int_a^x g(t) ((x - t)(t - a))^{n-1} dt. \quad (7) \]

Note that if \(f \) is analytic, then \(f(x^n, a^{[n]}) \) is an analytic function of \(x \). Thus \(M(x) = (f^{(2n-1)})^{-1}((2n - 1)! f(x^n, a^{[n]}) \) is as well, and we can differentiate \(M(x) \) as many times as we wish.
Now
\[(x - t)^{n-1}(t - a)^{n-1} = ((x - a) + (a - t))^{n-1}(t - a)^{n-1}\]
\[= \left(\sum_{k=0}^{n-1} \binom{n-1}{k} (a - t)^k (x - a)^{n-1-k}\right)(t - a)^{n-1}\]
\[= (x - a)^{n-1}(t - a)^{n-1} \sum_{k=0}^{n-1} \binom{n-1}{k} (-1)^k \frac{(t - a)^k}{(x - a)^k}.\]

Then
\[g(t)(x - t)^{n-1}(t - a)^{n-1} = \left(\sum_{m=0}^{\infty} a_m(t - a)^m\right)\]
\[\times \left(\sum_{k=0}^{n-1} \binom{n-1}{k} (-1)^k \frac{(t - a)^k}{(x - a)^k}\right)(x - a)^{n-1}(t - a)^{n-1}.\]

A little work then gives
\[\int_a^x g(t)(x - t)^{n-1}(t - a)^{n-1} \, dt\]
\[= \sum_{m=0}^{\infty} a_m(x - a)^{n+m} \left(\sum_{k=0}^{n-1} \binom{n-1}{k} (-1)^k \frac{1}{n+k+m}\right)(x - a)^{n-1}\]
\[= \left(\sum_{m=0}^{\infty} a_m(x - a)^m \frac{(n-1)!(n+m-1)!}{(2n+m-1)!}\right)(x - a)^{2n-1}.\]

Then by (7) we have
\[g(M(x)) = \sum_{m=0}^{\infty} a_m e_m(x - a)^m, \quad \text{where} \quad e_m = \frac{(2n-1)!(n+m-1)!}{(n-1)!(2n+m-1)!}.\]
(8)

Then
\[g'(M(x))g'(x) = \sum_{m=1}^{\infty} ma_m e_m(x - a)^{m-1}\]
(9)

\[\Rightarrow g'(a)M'(a) \quad \text{(Note that} \quad M(a) = a = a_1 e_1 \Rightarrow M'(a) = e_1 = \frac{1}{2}. \text{One then proceeds to differentiate both sides of (9) with respect to} \quad x, \quad \text{plug in} \quad x = a, \quad \text{and then solve for} \quad M''(a). \text{Continuing in this fashion one obtains as}\]
many derivatives of M at a as one likes, though the process becomes increasingly cumbersome. The author will supply the rest of the details of the proof of Theorem 5 upon request.

Remark. Theorem 5 holds if f has enough continuous derivatives—f need not be analytic, though that assumption makes the proof easier to write out. It is sufficient for our purposes to note that if $f \in C^{2n+1}(0, \infty)$, then (i) and (ii) still hold. This follows immediately from the fact that $g \in C^2 \Rightarrow g'(t) - g'(a) = g'(\xi)(x - a)$ and $g''(t) - g''(a) = g''(\xi)(x - a)$.

Corollary 1. For $M(x) = M_p(x, 1)$, we have

(i) $M''(1) = (p - 2n)/2(2n + 1)$.

(ii) $M^{\text{iv}}(1) = (3(p - 2n)/16(2n + 3)(2n + 1)^2)((p - 2n - 1)(p - 2n - 2)(2n + 1)(4n + 7) - 6(p - 2n)(p - 2n - 1)(2n + 1)(2n + 3) + (p - 2n)^3(2n + 1)(8n + 3)).$

Theorem 6. Let m and n be distinct positive integers, and p and q real numbers. Let $M(a, b)$ be the mean $M_p(a, b)$ corresponding to m, and let $N(a, b)$ be the mean $M_q(a, b)$ corresponding to n. Suppose that $M = N$. Then one of the following holds:

(A) $p = q = -1 \Rightarrow M = N = \sqrt{ab}$.

(B) $p = 2m$ and $q = 2n \Rightarrow M = N = (a + b)/2$.

(C) $p = (2m - 1)/2$ and $q = (2n - 1)/2 \Rightarrow M = N = ((\sqrt{b} + \sqrt{a})/2)^2$.

Proof. Since $M''(1) = N''(1)$, by Corollary 1 we have

$$p = (2m + 1) \left(\frac{1}{2n + 1} q + \frac{2m}{2m + 1} - \frac{2n}{2n + 1} \right).$$ \hspace{1cm} (10)

Setting $M^{\text{iv}}(1) = N^{\text{iv}}(1)$ gives nothing new, so we proceed to $M^{\text{iv}}(1) = N^{\text{iv}}(1)$, which implies

$$R(q) = -3(q + 1)(2q^2 - (6n - 1)q + 4n^2 - 2n) = 0.$$ \hspace{1cm} (11)

The solutions of (11) are easily seen to be $q = -1, 2n,$ and $(2n - 1)/2$. Substituting those values for q into (10) gives $p = -1, 2m,$ and $(2m - 1)/2$, respectively. Theorems 2, 3, and 4 then give the possibilities for M and N above.

Note that for $n = 1$ and $p = 0$, which really corresponds to $f(x) = \log x$, we have $M_p(a, b) = L(a, b) = (b - a)/(\log b - \log a)$, the logarithmic mean. An immediate consequence, then, of Theorem 6 is that $M_p \neq L$ for
any \(n > 1 \). Conspicuous by its absence in all our previous theorems is the harmonic mean. The following theorem shows why.

Theorem 7. For any positive integer \(n \), \(M_p(a, b) \) is never the harmonic mean \(H(a, b) = 2ab/(a + b) \).

Proof. Let \(M(x) = H(a, x) \) for fixed \(a > 0 \). A simple computation gives \(M''(a) = -1/2a \). By Theorem 5, \(M''(a) = (p - 2n)/(4(2n + 1)a) \), and hence \((p - 2n)/(4(2n + 1)a) = -1/2a \), which implies that \(p = -2n - 2 \). Then \(g(x) = f^{2n-1}(x) = Cx^{-4n-1} \) for some constant \(C \). There is no loss of generality in taking \(C = 1 \). Then \(a_j = g^{(j)}(1)/j! \), and we have \(a_j = ((-1)^j/j! \prod_{i=1}^{j} (4n + i) \). Now \(M^{(iv)}(1) = -\frac{3}{2} \) (again, considering \(M^{(iv)} \) gives no new information). By Corollary 1, after substituting for \(a_1, \ldots, a_4 \), we obtain

\[
M^{(iv)}(1) = -\frac{3}{2} \left(\frac{n + 3}{2n + 3} \right) = \left(\frac{n + 3}{2n + 3} \right) = 1 \Rightarrow n = 0,
\]

which contradicts the fact that \(n \) is a positive integer.

One might wonder if Theorem 7 holds if \(f(x) \) is not of the form \(cx^p \) (which gives the same mean as \(x^p \) for any \(c \neq 0 \)). If \(f \in C^{2n+1}(0, \infty) \), then by Theorem 5(i) and (ii) (see also the remark following Theorem 5), \(M''(a) = 1/4(2n + 1)(g''(a)/g'(a)) \). Now if \(M_f(a, b) = 2ab/(a + b) \), then \(M''(a) = -1/2a \) implies that \(g''(a)/g'(a) = 4(2n + 1)(-1/2a) \) for all \(a > 0 \). Solving that differential equation gives \(g(x) = cx^{-4n-1} \). One can then use Theorem 7 as above.

Remark. It should be noted that the harmonic mean does arise among the more general class of means defined by \((f_1(2n)/f_2(2n))^{-1}((f_1(b^{2n}), a^{2n}))/((f_2(b^{2n}), a^{2n})) \). For example, if \(n = 1, f_1(x) = x^a, \) and \(f_2(x) = x^b \), one obtains Stolarsky’s means \((\beta(b^\alpha - a^\alpha)/\alpha(b^\beta - a^\beta))^{1/(\alpha - \beta)} \) (see [S]), which give the harmonic mean for \(\alpha = -2 \) and \(\beta = -1 \).

We now prove a result concerning the comparability of the means \(M_{f_1} \) and \(M_{f_2} \).

Theorem 8. Let \(n \) be a positive integer, and suppose \(f_1 \) and \(f_2 \) are in \(C^{2n+1}(0, \infty) \) with \(f_1^{(2n)} > 0 \) and \(f_2^{(2n)} > 0 \) on \((0, \infty) \). Then \(M_{f_1}(a, b) \leq M_{f_2}(a, b) \) for all \(0 < a < b \) if and only if \(f_1^{(2n+1)}(x)/f_2^{(2n)}(x) \leq f_2^{(2n+1)}(x)/f_1^{(2n)}(x) \) for all \(x > 0 \).

Proof. Suppose \(M_{f_1}(a, b) \leq M_{f_2}(a, b) \) for all \(0 < a < b \). For fixed \(a \), let \(M_i(b) = M_i(a, b), i = 1, 2 \). Since \(M_1(a) = M_2(a) = a \) and \(M_2(a) = M_2(a) = \frac{1}{2} \) (by Theorem 5(i) and the remark following), \((M_1(b) - M_1(a)/(b - a)^2 \leq (M_2(b) - M_2(a) - M_2(a))/(b - a)) \).
\[(b - a)^2, M_1[b, a, a] \leq M_2[b, a, a] \Rightarrow M_1'(a) \leq M_2'(a),\] which by Theorem 5 implies that \[f_i^{2n+1}(a)/f_i^{2n}(a) \leq f_2^{2n+1}(a)/f_2^{2n}(a).\] Since \(a\) can be any positive number, this completes the proof of \((\Rightarrow)\). To prove \((\Leftarrow)\), by (3), \[M_i(a, b) = g_i^{-1}(\int_a^b g_i(t) \, E_n(t) \, dt),\] where \(g_i(t) = \int_t^{2n+1}(t), \quad i = 1, 2,\) and \(\int_a^b E_n(t) \, dt = 1.\) Approximate \(f_i^{2n} g_i(t) E_n(t) \, dt\) by a Riemann sum of the form \(S_i = \sum_{j=1}^m \lambda_j g_i(a_j)\) with \(a \leq a_1 \leq \cdots \leq a_m \leq b\) and \(\sum_{j=1}^m \lambda_j = 1\) (we are looking at the integral as a Stieltjes integral with respect to a probability measure).

Now
\[
\frac{f_i^{2n+1}(x)}{f_i^{2n}(x)} \leq \frac{f_2^{2n+1}(x)}{f_2^{2n}(x)} \iff \frac{g_i'(x)}{g_i''(x)} \leq \frac{g_2'(x)}{g_2''(x)},
\]

which is easily seen to be equivalent to \(g_2 \circ g_1^{-1}\) being convex. By [HLP, Theorem 92], \(g_1^{-1}(S_1) \leq g_2^{-1}(S_2)\) for any choice of the \(a_i\)'s and \(\lambda_j\)'s. Taking the limit as the Riemann sum \(S_i\) approaches \(\int_a^b g_i(t) E_n(t) \, dt\) gives \(M_i(a, b) \leq M_i'(a, b).\)

Theorem 9. \(M_i(a, b) = M_i'(a, b)\) for all \(0 < a < b\) if and only if \(f_2 = cf_1 + p\) for some nonzero constant \(c\) and some \(p \in \pi_{2n-2}.\)

Proof. \((\Rightarrow)\) If \(M_i = M_i',\) then by Theorem 8, \(f_i^{2n+1}(x)/f_i^{2n}(x) = f_2^{2n+1}(x)/f_2^{2n}(x)\) for all \(x > 0,\) which implies that \(f_2^{2n}(a) = cf_1^{2n}, c \neq 0.\) Integrating \(2n\) times gives \(f_2 = cf_1 + p\) for some nonzero constant \(c\) and some \(p \in \pi_{2n-2}.\) \((\Leftarrow)\) This is easy and we omit the proof.

Theorem 10. The means \(M_p\) are increasing in \(p,\) for each \(n.\)

Proof. For \(p_1 < p_2,\) let \(f_i(x) = x^p, i = 1, 2.\) Then
\[
\frac{f_i^{2n+1}(x)}{f_i^{2n}(x)} = \frac{p_1 - 2n}{x} \leq \frac{p_2 - 2n}{x} = \frac{f_2^{2n+1}(x)}{f_2^{2n}(x)}.
\]

By Theorem 8, \(M_{p_i}(a, b) \leq M_{p_2}(a, b)\) if neither \(p_1\) nor \(p_2\) is an integer between \(0\) and \(2n - 1.\) For \(p \in \{0, 1, \ldots, 2n - 1\}\) Theorem 8 follows by taking a limit, or one may apply Theorem 8 with \(f_i(x) = x^p, \log x.\)

Theorem 11. For each \(n,\) \(\lim_{p \to -\infty} M_p(a, b) = \max\{a, b\}\) and \(\lim_{p \to -\infty} M_p(a, b) = \min\{a, b\}.

Proof. Let \(f(x) = x^p, g = f^{(2n-1)}.\) As noted earlier we can approximate \(\int_a^b g(t) E_n(t) \, dt\) by a Riemann sum of the form \(S = \sum_{j=1}^m \lambda_j g(a_j)\) with \(a \leq a_1 \leq \cdots \leq a_m \leq b\) and \(\sum_{j=1}^m \lambda_j = 1.\) By [HLP, Theorem 4], the means \(g^{-1}(S)\) approach \(\max\{a_1, \ldots, a_m\}\) as \(p \to -\infty\) and approach \(\min\{a_1, \ldots, a_m\}\) as \(p \to -\infty.\) Assume without loss of generality that \(a < b.\) Then letting
$a = a_1$ and $b = a_n$ and letting the Riemann sums S approach the Stieltjes integral $\int_a^b g(t)E_n(t)\,dt$ give Theorem 11.

5. ASYMPTOTICS

In this section we examine the behavior of the means M_f as $n \to \infty$.

Theorem 12. $\lim_{n \to \infty} M_p(a, b) = \sqrt{ab}$ for each p.

Proof. By (3), for p not an element of $\{0, 1, \ldots, 2n - 1\}$, we have

$$M_p(a, b) = \left(\int_a^b t^{p-2n+1} E_n(t)\,dt \right)^{1/(p-2n+1)}, \quad \text{where } E_n(t)$$

$$= \frac{(2n-1)!}{(n-1)!^2 (b-a)^{2n-1}((b-t)(t-a))^{n-1}}. \quad (12)$$

Now make the change of variable $t = (by + a)/(y + 1) \Rightarrow dt = ((b - a)/(y + 1)^2)\,dy$. Then (12) becomes

$$M_p(a, b) = \frac{(2n-1)!}{(n-1)!^2} \left(\int_0^\infty \frac{(by + a)^{p-2n+1}(y + 1)^{-(p+1)y^{n-1}}\,dy}{y} \right)^{1/(p-2n+1)}. \quad (13)$$

Let $I_1 = \int_{a/b}^\infty (by + a)^{p-2n+1}(y + 1)^{-(p+1)y^{n-1}}\,dy$ and $I_2 = \int_0^{a/b} (by + a)^{p-2n+1}(y + 1)^{-(p+1)y^{n-1}}\,dy$. Rewrite I_1 as

$$\int_{a/b}^\infty \left(\frac{y}{(by + a)^2} \right)^n \left(\frac{by + a}{y + 1} \right)^{p+1} \frac{1}{y}\,dy.$$

We now use Laplace’s method to estimate I_1. We use the notation in [OL, Sect. 7.2] with n replacing x and y replacing t. Let $p(y) = \log((by + a)^2/y)$, $q(y) = (1/y)((by + a)/(y + 1))^{p+1}$, so that $I_1 = \int_{a/b}^\infty e^{-nq(y)} q(y)\,dy$. Then $p'(a/b) = 0$ and $p''(a/b) = b^2/2a^2 > 0$. It follows that p is increasing on $(a/b, \infty)$ and attains its unique minimum at a/b. Also, $p(y) - p(a/b) \sim (b^2/4a^2)(y - a/b)^2$ as $y \to a/b +$ and $q(y) \sim q(a/b)(y - a/b)^0$ since $q(a/b) \neq 0$. Then by [OL, Theorem 7.1],

$$I_1 \sim \frac{1/2(ab/(a + b)\Gamma(1/2)e^{-n \log(4a)}}{(b^2/4a^2)^{1/2}} \quad \text{as } n \to \infty. \quad (14)$$
Now write
\[I_2 = \int_{0}^{\frac{a}{b}} \left(\frac{y}{(by + a)^2} \right)^n \left(\frac{by + a}{y + 1} \right)^{p+1} \frac{1}{y} dy. \]

If we let \(u = -y \), \(I_2 \) becomes
\[\int_{-\frac{a}{b}}^{0} \left(\frac{-u}{(-bu + a)^2} \right)^n \left(\frac{-bu + a}{-u + 1} \right)^{p+1} \left(\frac{-1}{u} \right) du. \]

Letting \(p(u) = \log((-bu + a)^2/-u) \), \(q(u) = (-1/u)((-bu + a)/(-u + 1))^{p+1} \), as earlier by Laplace's method we have
\[I_2 \sim \frac{1}{2} (2ab/(a + b))^{p+1}(b/a)\Gamma(\frac{1}{2})e^{-n \log(4ab)} \frac{(b/4a^2)^n}{((b^2/4a^2)^n)^{1/2}} \quad \text{as } n \to \infty. \quad (15) \]

By (14) and (15),
\[I_1 + I_2 \sim \frac{(2ab/(a + b))^{p+1}(b/a)\Gamma(\frac{1}{2})e^{-n \log(4ab)}}{((b^2/4a^2)^n)^{1/2}} \quad \text{as } n \to \infty \]
\[\Rightarrow \]
\[(I_1 + I_2)^{1/(p-2n+1)} \sim (4ab)^{-n/(p-2n+1)} \to 2\sqrt{ab} \quad \text{as } n \to \infty \]

(it follows easily that the other terms in the asymptotic expression for \(I_1 + I_2 \) tend to 1 when raised to the 1/(p - 2n + 1) power). Thus we have shown
\[\left(\int_{0}^{\infty} (by + a)^{p-2n+1}(y + 1)^{-p+1}y^{n-1} \frac{1}{y} dy \right)^{1/(p-2n+1)} \sim 2\sqrt{ab} \quad (16) \]

(Note that the integral in (16) equals \(I_1 + I_2 \).) A simple application of Stirling's formula shows that \(((2n-1)!/(n-1)!)^{1/(p-2n+1)} \sim \frac{1}{2} \) as \(n \to \infty \), by (13) and (16), this finishes the proof of Theorem 12 if \(p \not\in \{0, 1, \ldots, 2n - 1\} \). If \(p \in \{0, 1, \ldots, 2n - 1\} \), Theorem 12 follows immediately from Theorem 10 and the case just proved.

It is interesting to ask what means arise from \(\lim_{n \to \infty} M_f \) when \(f \) is not of the form \(x^p \). We do not know the answer to this in general, but we now show that the geometric mean is not the only such mean.
THEOREM 13. If $f(x) = e^x$, then $\lim_{n \to \infty} M_f(a, b) = (a + b)/2$.

Proof. By (3), $M_f(a, b) = \log(\int_a^b e^t E_n(t) \, dt)$. Again letting $t = (by + a)/(y + 1)$, we have

$$M_f(a, b) = \log \left(\frac{(2n - 1)!}{(n - 1)!^2} \int_0^\infty \left(\frac{y}{(y + 1)^2} \right)^n y^{-1} e^{(by + a)/(y + 1)} \, dy \right).$$

Let

$$I_1 = \int_1^\infty \left(\frac{y}{(y + 1)^2} \right)^n y^{-1} e^{(by + a)/(y + 1)} \, dy = \int_1^\infty e^{-n \log(y/(y + 1)^2)} y^{-1} e^{(by + a)/(y + 1)} \, dy.$$

Again we use Laplace's method. Letting $p(y) = \log(y/(y + 1)^2)$ and $q(y) = y^{-1} e^{(by + a)/(y + 1)}$, by [OL, Theorem 7.1], we have

$$I_1 \sim \frac{1}{2} e^{(a+b)/2} \frac{1}{\sqrt{n}} \frac{2}{(2n - 1)!} \Gamma \left(\frac{1}{2} \right) \frac{\sqrt{n}}{(4n)!^{1/2}} \quad \text{as } n \to \infty$$

by a simple application of Stirling's formula. Hence,

$$\frac{(2n - 1)!}{(n - 1)!^2} \int_1^\infty \left(\frac{y}{(y + 1)^2} \right)^n y^{-1} e^{(by + a)/(y + 1)} \, dy \sim \frac{1}{2} e^{(a+b)/2} \quad \text{as } n \to \infty.$$

Similarly,

$$\frac{(2n - 1)!}{(n - 1)!^2} \int_0^1 \left(\frac{y}{(y + 1)^2} \right)^n y^{-1} e^{(by + a)/(y + 1)} \, dy \sim \frac{1}{2} e^{(a+b)/2} \quad \text{as } n \to \infty.$$

Adding the two asymptotic limits and taking the natural logarithm finish the proof of Theorem 13.

REFERENCES

