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A Traffic Flow Problem

Car drivers starting from a location A (a residential neighborhood)
need to reach a destination B (a working place) at a given time T .

There is a cost ϕ(τd) for departing early and a cost ψ(τa) for arriving
late.
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tT
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(t)ψ
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Elementary solution

L = length of the road, v = speed of cars

τa = τd +
L

v

Optimal departure time:

τoptd = argmin
t

{
ϕ(t) + ψ

(
t +

L

v

)}
.

If everyone departs exactly at the same optimal time,
a traffic jam is created and this strategy is not optimal anymore.
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An optimization problem for traffic flow

Problem: choose the departure rate ū(t) in order to minimize the total
cost to all drivers.

u(t, x)
.

= ρ(t, x) · v(ρ(t, x)) = flux of cars

minimize:

∫
ϕ(t) · u(t, 0) dt +

∫
ψ(t)u(t, L) dt

for a solution of  ρt + [ρ v(ρ)]x = 0 x ∈ [0, L]

ρ(t, 0)v(ρ(t, 0)) = ū(t)

Choose the optimal departure rate ū(t), subject to the constraint∫
ū(t) dt = κ = [total number of drivers]
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Equivalent formulations

Boundary value problem for the density ρ:

conservation law: ρt + [ρv(ρ)]x = 0, (t, x) ∈ R× [0, L]

control (on the boundary data): ρ(t, 0)v(ρ(t, 0)) = ū(t)

Cauchy problem for the flux u:

conservation law: ux + f (u)t = 0, u = ρ v(ρ) , f (u) = ρ

control (on the initial data): u(t, 0) = ū(t)

Cost: J(u) =

∫ +∞

−∞
ϕ(t)u(t, 0) dt +

∫ +∞

−∞
ψ(t)u(t, L) dt

Constraint:

∫ +∞

−∞
ū(t) dt = κ
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The flux function and its Legendre transform

u

f (0)’ p

f (p)*

0

M
ρ v(  )ρ

ρ* ρ M

f(u)

u

*ρ

0 0

ρ

u = ρ v(ρ) , ρ = f (u)

Legendre transform: f ∗(p)
.

= max
u

{
pu − f (u)

}
(1)

Solution to the conservation law is provided by the Lax formula
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The globally optimal (Pareto) solution

minimize: J(u) =

∫
ϕ(x) · u(0, x) dx +

∫
ψ(x) u(T , x) dx

subject to:


ut + f (u)x = 0

u(0, x) = ū(x) ,

∫
ū(x) dx = κ

(A1) The flux function f : [0,M] 7→ R is continuous, increasing, and strictly convex. It
is twice continuously differentiable on the open interval ]0, M[ and satisfies

f (0) = 0 , lim
u→M−

f ′(u) = +∞, f ′′(u) ≥ b > 0 for 0 < u < M . (2)

(A2) The cost functions ϕ,ψ satisfy ϕ′ < 0, ψ,ψ′ ≥ 0,

lim
x→−∞

ϕ(x) = +∞ , lim
x→+∞

(
ϕ(x) + ψ(x)

)
= +∞
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Existence and characterization of the optimal solution

Theorem (A.B. and K. Han, 2011). Let (A1)-(A2) hold. Then, for any given T , κ,
there exists a unique admissible initial data ū minimizing the cost J(·). In addition,

No shocks are present, hence u = u(t, x) is continuous for t > 0. Moreover

sup
t∈[0,T ], x∈R

u(t, x) < M

For some constant c = c(κ), this optimal solution admits the following
characterization: For every x ∈ R, let yc(x) be the unique point such that

ϕ(yc(x)) + ψ(x) = c

Then, the solution u = u(t, x) is constant along the segment with endpoints
(0, yc(x)), (T , x).

Indeed, either f ′(u) ≡ x−yc (x)
T

, or u ≡ 0
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Necessary conditions

y (x)

x

γ
x

t

0

T

x

c

ϕ(x) (x)ψ

0

f(u)

u

ϕ(yc(x)) + ψ(x) = c

f ′(u) =
x − yc(x)

T
on the characteristic segment γx
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An Example

Cost functions: ϕ(t) = −t, ψ(t) =

{
0, if t ≤ 0

t2, if t > 0

L = 1, u = ρ(2− ρ), M = 1, κ = 3.80758

Bang-bang solution Pareto optimal solution

τ
1 t

x

L=1

τ
0 0

τ0 = −2.78836, τ1 = 1.01924

total cost = 5.86767

τ
0 tτ10

x

L=1

τ0 = −2.8023, τ1 = 1.5976

total cost = 5.5714
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Does everyone pay the same cost?
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Departure time vs. cost in the Pareto optimal solution
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The Nash equilibrium solution

A solution u = u(t, x) is a Nash equilibrium if no driver can reduce
his/her own cost by choosing a different departure time.
This implies that all drivers pay the same cost.

To find a Nash equilibrium, write the conservation law ut + f (u)x = 0
in terms of a Hamilton-Jacobi equation

Ut + f (Ux) = 0 U(0, x) = Q(x) (3)

U(t, x)
.

=

∫ x

−∞
u(t, y) dy
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No constraint can be imposed on the departing rate, so a queue can form at the
entrance of the highway.

x 7→ Q(x) = number of drivers who have started their journey before time x
(joining the queue, if there is any).

Q(−∞) = 0, Q(+∞) = κ

x 7→ U(T , x) = number of drivers who have reached destination within time x

U(T , x) = min
y∈R

{
T f ∗

(x − y

T

)
+ Q(y)

}
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Characterization of a Nash equilibrium

a x

β

β

Q(x)

U(T,x)

q
x (  )β

κ

x (  )

β ∈ [0, κ] = Lagrangian variable labeling one particular driver

xq(β) = time when driver β joins the queue

xa(β) = time when driver β arrives at destination
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Existence and Uniqueness of Nash equilibrium

Departure and arrival times are implicitly defined by

Q(xq(β)−) ≤ β ≤ Q(xq(β)+) , U(T , xa(β)) = β

Nash equilibrium =⇒ ϕ(xq(β)) + ψ(xa(β)) ≡ c

Theorem (A.B. - K. Han, SIAM J. Applied Math., to appear).

Let the flux f and cost functions ϕ,ψ satisfy the assumptions (A1)-(A2).
Then, for every κ > 0, the Hamilton-Jacobi equation

Ut + f (Ux) = 0

admits a unique Nash equilibrium solution with total mass κ
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Sketch of the proof

1. For a given cost c , let Qc be the set of all initial data Q(·) for which every
driver has a cost ≤ c :

ϕ(xq(β)) + ψ(xa(β)) ≤ c for a.e. β ∈ [0, Q(+∞)] .

2. Claim: Q∗(x)
.

= sup
{
Q(x) ; Q ∈ Qc

}
is the initial data for a Nash equilibrium with common cost c .

3. For a given cost c , the Nash equilibrium is unique.
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4. There exists a minimum cost c0 such that κ(c) = 0 for c ≤ c0.

The map c 7→ κ(c) is strictly increasing and continuous
from [c0 , +∞[ to [0, +∞[ .

0

κ

κ (c)

cc
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An example of Nash equilibrium

Q(t)

x

t

t

τ τ

τ

0

0

τ 0

S

2 3
τ

1
τ

q τ
4

S
t

(t)

t

τ
4

δ
0

τ
1

A queue of size δ0
forms instantly at time
τ0

The last driver of this
queue departs at τ2,
and arrives at exactly 0.

The queue is depleted
at time τ3. A shock is
formed.

The last driver departs
at τ1.
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Numerical results

L = 1, u(ρ) = ρ(2− ρ), M = 1, κ = 3.80758, c = 2.7

τ
0

τ
0

τ
3

τ
3

τ
1

τ
4

τ
1

τ
4

τ
2

τ
2

x

t0

S

τ
q

S
t

(t)

t

t

M

flux

Q’(t)

0

Q(t) = 1.7 +
√

t + 2.7 + 1/(4(
√
t + 2.7 + 2.7))

Q′(t) =
(

1− 1/(4(
√
t + 2.7 + 2.7)2)

)
/(2
√

t + 2.7)

τ0 = −2.7 τ2 = −0.9074

τ3 = 0.9698 τ4 = 1.52303

τ1 = 1.56525 tS = 2.0550

δ0 = 1.79259

total cost = 10.286
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A comparison

Total cost of the Pareto optimal solution: Jopt = 5.5714

Total cost of the Nash equilibrium solution: JNash = 10.286

Price of anarchy: JNash − Jopt ≈ 4.715

Can one eliminate this inefficiency,
yet allowing freedom of choice to each driver ?

(goal of non-cooperative game theory: devise incentives)
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Optimal pricing

Scientific American, Dec. 2010: Ten World Changing Ideas

“Building more roads won’t eliminate traffic. Smart pricing will.”

Suppose a fee b(t) is collected at a toll booth at the entrance of the highway,
depending on the departure time.

New departure cost: ϕ̃(t) = ϕ(t) + b(t)

Problem: We wish to collect a total revenue R .

How do we choose t 7→ b(t) ≥ 0 so that the Nash solution with departure
and arrival costs ϕ̃, ψ yields the minimum total cost to each driver?
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p(t) = cost to a driver starting at time t, in the globally optimal solution

Optimal pricing: b(t) = pmax − p(t) + C

choosing the constant C so that [total revenue] = R.

b

ϕ

ψ

0
t

ϕ = ϕ +
~
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Continuous dependence of the Nash solution

ϕ1(x), ϕ2(x) costs for departing at time x

ψ1(x), ψ2(x) costs for arriving at time x

v1(ρ), v2(ρ) speeds of cars, when the density is ρ ≥ 0

Q1(x), Q2(x) = number of cars that have departed up to time x , in the
corresponding Nash equilibrium solutions (with zero total cost to all drivers)

Theorem (A.B., C.J.Liu, and F.Yu, 2011)

Assume all cars depart and arrive within the interval [a, b], and the maximum
density is ≤ ρ∗. Then

‖Q1(x)− Q2(x)‖L1([a,b])

≤ C ·
(
‖ϕ1 − ϕ2‖L∞([a,b]) + ‖ψ1 − ψ2‖L∞([a,b]) + ‖v1 − v2‖1/2

L∞([0,ρ∗])

)
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A minimax property of Nash equilibria

For any departure distribution Q(·), let

Φ(Q)
.

= maximum of the total costs, among all drivers

Theorem (A.B., C.J.Liu, and F.Yu, 2011)

Among all starting distributions with κ drivers, the distribution Q∗(·)
which yields the Nash equilibrium is a global minimizer of Φ.
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Drivers with different costs

Assume that there are several groups of drivers, who use the same road
but need to reach destination at different times.

For i = 1, . . . ,N, the i-th group consists of κi drivers,
with departure and arrival costs ϕi (x), ψi (x).

Does there exist a unique global optima and a unique Nash equilibrium
solution, in this more general situation?
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Existence of a Nash equilibrium for several groups of drivers

Theorem 4 (A.B. & K. Han, 2011).

Let the flux f and cost functions ϕi , ψi satisfy the assumptions (A1)-(A2).
Then, for every κ1, . . . , κn > 0, the Hamilton-Jacobi equation

Ut + f (Ux) = 0

admits a (possibly non unique) Nash equilibrium solution, where κi is the number
of drivers of the i-th group.
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Sketch of the proof

For any given costs c = (c1, . . . , cn), there exists at least one Nash solution
where each driver of the i-th group pays the same cost ci .

Consider the multifunction c = (c1, . . . , cn) 7→ K (c)

K (c)
.

=

{
(κ1, . . . , κn) ; there exists a Nash solution where

each i-driver pays a total cost ci and the total number of i-drivers is κi

}
The multifunction c 7→ K (c) is upper semicontinuous (i.e. it has closed
graph), with compact, convex values.

By a topological argument (using Cellina’s approximate selection theorem),
as c = (c1, . . . , cn) ranges over Rn, the images K (c) cover the positive cone

Rn
+ =

{
(κ1, . . . , κn) ; κi ≥ 0 i = 1, . . . , n

}
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Future work: Network of roads

Extend the previous results to network of roads, including the possibility that
drivers choose different routes to get to the same destination.

2A

A

1

2

A
3

B
1

B

On each road, the flux satisfies a conservation law

+ boundary conditions at nodes
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Stability of Nash equilibrium ?

To justify the practical relevance of a Nash equilibrium, we need to analyze
a suitable dynamic model, and show that the rate of departures
asymptotically converges to the Nash equilibrium.

Assume that drivers can change their departure time on a day-to-day
basis, in order to decrease their own cost.

Introduce an additional variable θ counting the number of days on the
calendar.

ū(x , θ)
.

= rate of departures at time x , on day θ]

Φ(x , θ)
.

= [cost to a driver starting at time x , on day θ]
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Model 1: drivers gradually change their departure time, drifting toward
times where the cost is smaller.
If the rate of change is proportional to the gradient of the cost, this leads
to

ūθ + [Φx ū]x = 0

Model 2: drivers jump to different departure times having a lower cost.
If the rate of change is proportional to the difference between the costs,
this leads to

ūθ(x) =

∫
ū(y)

[
Φ(y)− Φ(x)

]
+
dy −

∫
ū(x)

[
Φ(x)− Φ(y)

]
+
dy

Question: as θ →∞, does the departure rate u(x , θ) approach the unique
Nash equilibrium?
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Some numerical experiments (Wen Shen)

departure and arrival costs: ϕ(x) = − x , ψ(x) = ex

velocity of cars: v(ρ) = 2− ρ length of road = 2

total number of cars = 2.2005

common total cost in the Nash equilibrium = 3

ρt + (2ρ− ρ2)x = 0
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Numerical simulation: Model 1
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Numerical simulation: Model 2
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