Suppose that \(\Sigma \) is a p × q orientationally uniform random matrix, and \(g(X) \) is a q-dimensional random vector with \(E(X) = 0 \) and \(\text{var}(X) = \Sigma \). Let \(\Sigma = \text{diag}(\lambda_1, \ldots, \lambda_p) \), \(\Sigma \) is the diagonal matrix containing the ordered \(\lambda_1, \ldots, \lambda_p \) are the ordered eigenvalues of \(\Sigma \) in the sense that \(\lambda_1 \geq \ldots \geq \lambda_p \), and so on, were \(\lambda = \text{diag}(\lambda_1, \ldots, \lambda_p) \) is a a \(p \times p \) diagonal matrix with \(a_{i,i} \leq \lambda_i \) for all \(i \). Then the random variables \(a_1, a_2, \ldots, a_p \) are exchangeable.

Theorem
Suppose \(a \) is a p × q orientationally uniform random matrix, \(g(X) \) is a q-dimensional random vector and \(Y \) is a random variable such that \(E(Y) = 0 \), \(\text{var}(Y) = \beta \) positive definite matrix and \(c \) is any constant. Then we have \(\text{var}(Y)^{1/2} \leq \beta \). Hence, \(\beta = \text{var}(Y)^{1/2} \) where \(\beta \) is a \(p \times p \) diagonal matrix with \(a_{i,i} \leq \beta_i \) for all \(i \). Then the random variables \(a_1, a_2, \ldots, a_p \) are exchangeable.

Theorem
Suppose \(a \) is a p × q oriented random matrix, \(g(X) \) is a q-dimensional random vector, \(Y \) is a random variable such that \(E(Y) = 0 \), \(\text{var}(Y) = \beta \) positive definite matrix and \(c \) is any constant. Then we have \(\text{var}(Y)^{1/2} \leq \beta \). Hence, \(\beta = \text{var}(Y)^{1/2} \) where \(\beta \) is a \(p \times p \) diagonal matrix with \(a_{i,i} \leq \beta_i \) for all \(i \). Then the random variables \(a_1, a_2, \ldots, a_p \) are exchangeable.

Theorem
Suppose \(a \) is a p × q oriented random matrix, \(g(X) \) is a q-dimensional random vector, \(Y \) is a random variable such that \(E(Y) = 0 \), \(\text{var}(Y) = \beta \) positive definite matrix and \(c \) is any constant. Then we have \(\text{var}(Y)^{1/2} \leq \beta \). Hence, \(\beta = \text{var}(Y)^{1/2} \) where \(\beta \) is a \(p \times p \) diagonal matrix with \(a_{i,i} \leq \beta_i \) for all \(i \). Then the random variables \(a_1, a_2, \ldots, a_p \) are exchangeable.

Theorem
Suppose \(a \) is a p × q orientationally uniform random matrix, \(g(X) \) is a q-dimensional random vector and \(Y \) is a random variable such that \(E(Y) = 0 \), \(\text{var}(Y) = \beta \) positive definite matrix and \(c \) is any constant. Then we have \(\text{var}(Y)^{1/2} \leq \beta \). Hence, \(\beta = \text{var}(Y)^{1/2} \) where \(\beta \) is a \(p \times p \) diagonal matrix with \(a_{i,i} \leq \beta_i \) for all \(i \). Then the random variables \(a_1, a_2, \ldots, a_p \) are exchangeable.

Theorem
Suppose \(a \) is a p × q oriented random matrix, \(g(X) \) is a q-dimensional random vector, \(Y \) is a random variable such that \(E(Y) = 0 \), \(\text{var}(Y) = \beta \) positive definite matrix and \(c \) is any constant. Then we have \(\text{var}(Y)^{1/2} \leq \beta \). Hence, \(\beta = \text{var}(Y)^{1/2} \) where \(\beta \) is a \(p \times p \) diagonal matrix with \(a_{i,i} \leq \beta_i \) for all \(i \). Then the random variables \(a_1, a_2, \ldots, a_p \) are exchangeable.

Theorem
Suppose \(a \) is a p × q orientationally uniform random matrix, \(g(X) \) is a q-dimensional random vector and \(Y \) is a random variable such that \(E(Y) = 0 \), \(\text{var}(Y) = \beta \) positive definite matrix and \(c \) is any constant. Then we have \(\text{var}(Y)^{1/2} \leq \beta \). Hence, \(\beta = \text{var}(Y)^{1/2} \) where \(\beta \) is a \(p \times p \) diagonal matrix with \(a_{i,i} \leq \beta_i \) for all \(i \). Then the random variables \(a_1, a_2, \ldots, a_p \) are exchangeable.

Theorem
Suppose \(a \) is a p × q oriented random matrix, \(g(X) \) is a q-dimensional random vector, \(Y \) is a random variable such that \(E(Y) = 0 \), \(\text{var}(Y) = \beta \) positive definite matrix and \(c \) is any constant. Then we have \(\text{var}(Y)^{1/2} \leq \beta \). Hence, \(\beta = \text{var}(Y)^{1/2} \) where \(\beta \) is a \(p \times p \) diagonal matrix with \(a_{i,i} \leq \beta_i \) for all \(i \). Then the random variables \(a_1, a_2, \ldots, a_p \) are exchangeable.

Theorem
Suppose \(a \) is a p × q orientationally uniform random matrix, \(g(X) \) is a q-dimensional random vector and \(Y \) is a random variable such that \(E(Y) = 0 \), \(\text{var}(Y) = \beta \) positive definite matrix and \(c \) is any constant. Then we have \(\text{var}(Y)^{1/2} \leq \beta \). Hence, \(\beta = \text{var}(Y)^{1/2} \) where \(\beta \) is a \(p \times p \) diagonal matrix with \(a_{i,i} \leq \beta_i \) for all \(i \). Then the random variables \(a_1, a_2, \ldots, a_p \) are exchangeable.

Theorem
Suppose \(a \) is a p × q oriented random matrix, \(g(X) \) is a q-dimensional random vector, \(Y \) is a random variable such that \(E(Y) = 0 \), \(\text{var}(Y) = \beta \) positive definite matrix and \(c \) is any constant. Then we have \(\text{var}(Y)^{1/2} \leq \beta \). Hence, \(\beta = \text{var}(Y)^{1/2} \) where \(\beta \) is a \(p \times p \) diagonal matrix with \(a_{i,i} \leq \beta_i \) for all \(i \). Then the random variables \(a_1, a_2, \ldots, a_p \) are exchangeable.