The Picard group of the moduli space of vector bundles on the quadric surface

Dmitrii Pedchenko
FRG Workshop on Moduli Spaces and Stability, December 2020

The Pennsylvania State University
Introduction: Moduli space of vector bundles

\(X = \) smooth projective surface \(/\mathbb{C} \),

\(H = \) ample divisor on \(X \).

For a vector bundle \(\mathcal{V} \), set \(\mu(\mathcal{V}) = \frac{c_1(\mathcal{V}) \cdot H}{r(\mathcal{V})} \).

Definition

Vector bundle \(\mathcal{V} \) is slope (semi)stable if for any subbundle \(\mathcal{E} \subset \mathcal{V} \), we have

\[\mu(\mathcal{E}) \leq \mu(\mathcal{V}). \]

Key fact: for \(\mathcal{V}, \mathcal{W} \) semistable with \(\mu(\mathcal{V}) > \mu(\mathcal{W}) \), we have \(\text{Hom}(\mathcal{V}, \mathcal{W}) = 0 \).

Fix numerical invariants \(\mathbf{v} = (r, c_1, c_2) \in K(X) \).

Theorem *(Mumford, Gieseker, Maruyama, Simpson, Álvarez-Cónsul, King)*

There is a projective moduli space \(M(\mathbf{v}) \) for semistable bundles on \(X \).

We will be interested in the Picard group of the moduli space:

\[\text{Pic} \left(M(\mathbf{v}) \right), \]

when \(X = \mathbb{P}^1 \times \mathbb{P}^1 \). Previous work: Yoshioka, Nakashima, Qin.
Constructing line bundles on $\mathcal{M}(\mathbf{v})$

$\mathcal{U}/\mathcal{S} = \text{flat family of bundles of Chern character } \mathbf{v} \text{ on } X$:

$$
\begin{array}{c}
\mathcal{U} \\
\downarrow \\
\mathcal{X} \times \mathcal{S} \\
\downarrow q \quad \downarrow p \\
\mathcal{X} \\
\end{array}
$$

The Donaldson homomorphism is a map $\lambda_{\mathcal{U}} : K(X) \to \text{Pic}(S)$ defined by

$$
K(X) \xrightarrow{q^*} K^0(X \times S) \xrightarrow{\mathcal{U}^*} K^0(X \times S) \xrightarrow{p^!} K^0(S) \xrightarrow{\text{det}} \text{Pic}(S)
$$

Set $\mathbf{v}^\perp = \{ e \in K(X) \mid \chi(e \cdot \mathbf{v}) = 0 \}$.

The Donaldson homomorphism $\mathbf{v}^\perp \xrightarrow{\lambda} \text{Pic}(\mathcal{M}(\mathbf{v}))$ gives a natural way to construct line bundles on $\mathcal{M}(\mathbf{v})$.
The $X = \mathbb{P}^2$ case

Definition

Vector bundle E is exceptional if

\[\text{Hom}(E, E) = \mathbb{C}, \]
\[\text{Ext}^i(E, E) = 0 \quad \text{for} \quad i > 0. \]

Exceptional bundles are semistable.

Introduce $\nu = (r, \nu, \Delta)$ with $\nu = \frac{c_1}{r}$, $\Delta = \frac{1}{2} \nu^2 - \frac{c_2}{r}$.

Theorem (Drézet, Le Potier ’85)

\[\dim M(\nu) > 0 \iff \Delta \geq \text{DLP}(\nu) \]

The branches of the DLP curve are constructed using exceptional bundles: if E satisfies $0 \leq \mu(E) - \mu(\nu) < 3$, then

\[\text{Hom}(E, \nu) = 0 \quad \text{by semistability}, \quad \text{Ext}^2(E, \nu) = 0 \quad \text{by Serre duality and semistability} \implies \chi(E, \nu) \leq 0. \]

Using Riemann-Roch, this is a numerical condition $\Delta \geq \text{DLP}(\nu)$ on $\nu = (r, \nu, \Delta)$.
The $X = \mathbb{P}^2$ case

Definition

If ν lies on the branch of the DLP curve given by the exceptional bundle E, then we say E is associated to ν.

\[\chi(E, \nu) = 0 \implies \text{Ext}^i(E, \nu) = 0 \]

Theorem (Drézet ’88)

Let $\nu = (r, \nu, \Delta)$ be a character with $\dim M(\nu) > 0$.

1. **Above DLP**: if $\Delta > \text{DLP}(\nu)$, then λ is an isomorphism and
 \[\text{Pic}(M(\nu)) \simeq \mathbb{Z}^2. \]

2. **On DLP**: if $\Delta = \text{DLP}(\nu)$, then λ is surjective,
 \[\text{Pic}(M(\nu)) \simeq \mathbb{Z}, \]
 and $\ker(\lambda) = \mathbb{Z}[E]$, where E is associated to ν and \overline{E} is either E or E^\vee.

Recall the Donaldson homomorphism $\nu^\perp \to \text{Pic}(M(\nu))$.
We have $K(\mathbb{P}^2) \simeq \mathbb{Z}^3$ and $\nu^\perp = \{ e \in K(\mathbb{P}^2) \mid \chi(e \cdot \nu) = 0 \} \simeq \mathbb{Z}^2$.

The DLP curve: graph of $\Delta = \text{DLP}(\nu)$ for $X = \mathbb{P}^2$.

$\mathcal{O}_{\mathbb{P}^2}(1)$
The $X = \mathbb{P}^1 \times \mathbb{P}^1$ case

Theorem (Rudakov ’94)

$$\dim M(\nu) > 0, \quad H = F_1 + (1 \pm \epsilon)F_2$$

\[
\Delta \geq \text{DLP}(\nu)
\]

$\nu \in \text{Pic}(\mathbb{P}^1 \times \mathbb{P}^1)_{\mathbb{Q}} = \{aF_1 + bF_2 | a, b \in \mathbb{Q}\}$.

$\nu^\perp = \{e \in K(\mathbb{P}^1 \times \mathbb{P}^1) | \chi(e \cdot \nu) = 0\} \simeq \mathbb{Z}^3$.

The Picard number is no longer controlled only by the exceptional bundles.

Theorem (P. ’20)

Let $\nu = (r, \nu, \Delta)$ be a character with $\dim M(\nu) > 0$. Let $\nu^\perp \xrightarrow{\lambda} \text{Pic}(M(\nu))$ be the Donaldson homomorphism.

1. Above DLP: λ is an isomorphism and $\text{Pic}(M(\nu)) \simeq \mathbb{Z}^3$.

2. On one branch of DLP: λ is surjective, and if E is associated to ν, then either

 a) $\text{Pic}(M(\nu)) \simeq \mathbb{Z}^2$, $\text{ker}(\lambda) = \mathbb{Z}[E]$, or

 (!) b) $\text{Pic}(M(\nu)) \simeq \mathbb{Z}$, $\text{ker}(\lambda) \supset \mathbb{Z}[E]$. (!)

3. On two branches of DLP: λ is surjective, and if E_1, E_2 are associated to ν, then

 $\text{Pic}(M(\nu)) \simeq \mathbb{Z}$, $\text{ker}(\lambda) \simeq \mathbb{Z}[E_1] + \mathbb{Z}[E_2]$.
Take $w_1 = (r, \nu, \Delta) = (4, -\frac{1}{4} F_1 - \frac{1}{4} F_2, \frac{9}{16})$; line bundle \mathcal{O} is associated to ν. Then

$$M(w_1) \cong \mathbb{P}^3.$$

One can iteratively construct an infinite sequence $\{w_k\}_{k \in \mathbb{N}}$ with $\text{Pic}(M(w_k)) \cong \mathbb{Z}$.

DLP surface: graph of $\Delta = \text{DLP}(\nu)$ for $X = \mathbb{P}^1 \times \mathbb{P}^1$
Idea of the proof

1. Build a family \mathcal{V}_t/T of bundles of character ν admitting convenient resolutions
2. Show $\text{Pic}(M(\nu)) \simeq \text{Pic}^G(T^{ss})$
3. Compute $\text{Pic}^G(T)$ (easy)
4. Analyze the unstable locus $T^{un} \subset T$ (codimension, irreducibility) to find $\text{Pic}^G(T^{ss})$ (hard)

Good characters

In the good case, $\text{codim}_T(T^{un}) \geq 2$ and $\text{Pic}(M(\nu)) \simeq \text{Pic}^G(T^{ss}) \simeq \text{Pic}^G(T) \simeq \mathbb{Z}^2$.

Bad characters

In the bad case, the locus $T^{un} \subset T$ has an irreducible divisorial component, which gives

$$\mathbb{Z} \rightarrow \text{Pic}^G(T) \xrightarrow{\text{res}} \text{Pic}^G(T^{ss}) \rightarrow 0,$$

and causes the Picard rank to drop:

$$\text{Pic}(M(\nu)) \simeq \mathbb{Z}$$

instead of \mathbb{Z}^2.
Thank you!

Theorem *(P. ’20)*

Let $\mathbf{v} = (r, \nu, \Delta)$ be a character with $\dim M(\mathbf{v}) > 0$. Let $\mathbf{v} \perp \overset{\lambda}{\rightarrow} \text{Pic}(M(\mathbf{v}))$ be the Donaldson homomorphism. If \mathbf{v} is

1. **Above DLP:** λ is an isomorphism and

 $$\text{Pic}(M(\mathbf{v})) \simeq \mathbb{Z}^3.$$

2. **On one branch of DLP:** λ is surjective, and if E is associated to \mathbf{v}, then either

 a) $\text{Pic}(M(\mathbf{v})) \simeq \mathbb{Z}^2$, $\ker(\lambda) = \mathbb{Z}[\overline{E}]$, or

 (i) b) $\text{Pic}(M(\mathbf{v})) \simeq \mathbb{Z}$, $\ker(\lambda) \supseteq \mathbb{Z}[\overline{E}]$. (i)

3. **On two branches of DLP:** λ is surjective, and if E_1, E_2 are associated to \mathbf{v}, then

 $$\text{Pic}(M(\mathbf{v})) \simeq \mathbb{Z}, \quad \ker(\lambda) \simeq \mathbb{Z}[\overline{E_1}] + \mathbb{Z}[\overline{E_2}].$$