The Picard group of the moduli space of vector bundles on the quadric surface

Dmitrii Pedchenko
MAGGC Online, UIC, 2020
The Pennsylvania State University
Plan of the talk

1. Moduli space of vector bundles on a surface X,
2. Case $X = \mathbb{P}^2$,
3. Case $X = \mathbb{P}^1 \times \mathbb{P}^1$.
Introduction: Moduli space of vector bundles

\(X = \) smooth projective surface \(\mathbb{C} \),

\(H = \) ample divisor on \(X \).

For a vector bundle \(\mathcal{V} \), set \(\mu_H(\mathcal{V}) = \frac{c_1(\mathcal{V}) \cdot H}{r(\mathcal{V})} \).

Definition

Vector bundle \(\mathcal{V} \) is slope (semi)stable if for any subbundle \(\mathcal{E} \subset \mathcal{V} \), we have

\[\mu_H(\mathcal{E}) \leq \mu_H(\mathcal{V}). \]

Fix numerical invariants \(\mathbf{v} = (r, ch_1, ch_2) \in K(X) \).

Theorem *(Mumford, Gieseker, Maruyama, Simpson, Álvarez-Cónsul, King)*

There is a projective moduli space \(M(\mathbf{v}) \) for semistable bundles on \(X \).

We will be interested in the Picard group of the moduli space:

\[\text{Pic} \left(M(\mathbf{v}) \right), \]

when \(X = \mathbb{P}^1 \times \mathbb{P}^1 \).
The $X = \mathbb{P}^2$ case

Introduce $\nu = (r, \nu, \Delta)$ with
$$\nu = \frac{c_1}{r}, \quad \Delta = \frac{1}{2} \nu^2 - \frac{ch_2}{r}.$$

Theorem (Drézet, Le Potier ’85)

$$\dim M(\nu) > 0$$

$$\Delta \geq \text{DLP}(\nu)$$

Theorem (Drézet ’88)

Let ν be a character with $\dim M(\nu) > 0$.

1. If $\Delta > \text{DLP}(\nu)$, then $\text{Pic}(M(\nu)) \simeq \mathbb{Z}^2$.
2. If $\Delta = \text{DLP}(\nu)$, then $\text{Pic}(M(\nu)) \simeq \mathbb{Z}$.

DLP curve: graph of $\Delta = \text{DLP}(\nu)$ for $X = \mathbb{P}^2$.

ν
The $X = \mathbb{P}^2$ case

DLP curve: graph of $\Delta = \text{DLP}(\nu)$ for $X = \mathbb{P}^2$.

Set $\nu^\perp = \{ u \in K(\mathbb{P}^2) \mid \chi(u \cdot \nu) = 0 \} \simeq \mathbb{Z}^2$.

Donaldson homomorphism $\nu^\perp \xrightarrow{\lambda} \text{Pic}(M(\nu))$ gives a natural way to construct line bundles on $M(\nu)$.

Definition

Vector bundle E is exceptional if

- $\text{Hom}(E, E) = \mathbb{C}$,
- $\text{Ext}^i(E, E) = 0$ for $i > 0$.

Definition

Suppose ν lies on the DLP curve. There is a unique exceptional bundle E with $\chi([E], \nu) = 0$ and $0 \leq \mu(E) - \mu(\nu) < 3$.

We say E is associated to ν.

Theorem (Drézet ’88)

Let $\nu = (r, \nu, \Delta)$ be a character with $\dim M(\nu) > 0$.

1. If $\Delta > \text{DLP}(\nu)$, then λ is an isomorphism and $\text{Pic}(M(\nu)) \simeq \mathbb{Z}^2$.

2. If $\Delta = \text{DLP}(\nu)$, then λ is surjective, $\text{Pic}(M(\nu)) \simeq \mathbb{Z}$, and $\ker(\lambda) = \mathbb{Z}[E^*]$, where E is associated to ν.
The $X = \mathbb{P}^1 \times \mathbb{P}^1$ case

Theorem (Rudakov ’94)

\[\dim M(\nu) > 0 \]

\[\Delta \geq \text{DLP}(\nu) \]

Note that $\nu = \frac{c_1}{r} = aE + bF$, $a, b \in \mathbb{Q}$.

Definition

Suppose ν lies on the DLP surface. Exceptional E is associated to ν if

$\chi([E], \nu) = 0$ and $0 \leq \mu(E) - \mu(\nu) < 4$.

Set $\nu^\perp = \{ u \in K(\mathbb{P}^1 \times \mathbb{P}^1) \mid \chi(u \cdot \nu) = 0 \} \cong \mathbb{Z}^3$.

The Picard number is no longer controlled only by associated exceptional bundles.

Theorem (P. ’20)

Let $\nu = (r, \nu, \Delta)$ be a character with $\dim M(\nu) > 0$. Let $\nu^\perp \xrightarrow{\lambda} \text{Pic}(M(\nu))$ be the Donaldson homomorphism.

1. If $\Delta \geq \text{DLP}(\nu) + \frac{1}{r}$, then λ is an isomorphism and $\text{Pic}(M(\nu)) \cong \mathbb{Z}^3$.

2. If $\Delta = \text{DLP}(\nu)$ and ν has a single associated bundle E, then λ is surjective, but there are ν with

 a) $\text{Pic}(M(\nu)) \cong \mathbb{Z}^2$, $\ker(\lambda) = \mathbb{Z}[E]$,

 b) $\text{Pic}(M(\nu)) \cong \mathbb{Z}$, $\ker(\lambda) \supseteq \mathbb{Z}[E]$. (!)

3. If $\Delta = \text{DLP}(\nu)$ and ν has two associated bundles E_1, E_2, then λ is surjective with

 $\text{Pic}(M(\nu)) \cong \mathbb{Z}$, $\ker(\lambda) \cong \mathbb{Z}[E_1] + \mathbb{Z}[E_2]$. (!)
New behavior: example

Take $v = (r, \nu, \Delta) = (4, -\frac{1}{4}E - \frac{1}{4}F, \frac{9}{16})$; line bundle \mathcal{O} is associated to v.

Vector bundles $\mathcal{V} \in M(v)$ admit a Beilinson-type resolution

$$
0 \longrightarrow \mathcal{O}(-1, -1)^2 \xrightarrow{\varphi} \mathcal{O}(-1, 0)^3 \oplus \mathcal{O}(0, -1)^3 \longrightarrow \mathcal{V} \longrightarrow 0
$$

Set $\mathbb{H} = \text{Hom}(A, B)$. Then $\mathbb{H} \setminus \{\varphi \mid \text{coker}(\varphi) \text{ is unstable}\} \to M(v)$ is a geometric quotient by a certain group action.

New divisorial locus of unstable bundles

In this case, the locus $\{\varphi \mid \text{coker}(\varphi) \text{ is unstable}\} \subset \mathbb{H}$ has a divisorial component, which makes $\text{Pic}(M(v)) \cong \mathbb{Z}$ instead of \mathbb{Z}^2. For general φ in this component, the corresponding bundle $\mathcal{V} = \text{coker}(\varphi)$ admits the Harder-Narasimhan filtration $0 \subset F_1 \subset F_2 = \mathcal{V}$ whose quotients have characters

$$
v_1 = (2, -\frac{1}{2}E, \frac{1}{2}), \quad v_2 = (2, -\frac{1}{2}F, \frac{1}{2}).
$$

Thank you!