Babu, G. Jogesh

On the characteristic function of the distribution of the values of additive arithmetic functions.

Let \(f \) be a real-valued additive \((f(mn) = f(m) + f(n) \text{ for } (m, n) = 1)\) arithmetic function satisfying \(f(2^k) = kf(2) \) for \(k = 1, 2, \ldots \). Let \(g \) be a real-valued multiplicative \((g(mn) = g(m)g(n) \text{ for } (m, n) = 1)\) arithmetic function with \(g(2^k) = g^k(2) \) for \(k = 1, 2, \ldots \). The author proves the following two theorems. Theorem 1: If \(F \) is the distribution of \(f \), then there exists a discrete infinitely divisible distribution \(G \) such that \(F \ast G \) is infinitely divisible with discrete Levy function (in the Levy representation of the logarithm of the characteristic function), and no normal factor. Hence such \(f \) cannot have a gamma distribution, nor can it have any stable distributions. In particular, \(f \) cannot have an exponential distribution. From this follows Theorem 2: \(g \) cannot have a uniform distribution.