Babu, G. Jogesh

On the distribution of arithmetic functions.

Let P_N be an additive set function on subsets of a finite set U_N. That is, if A and B are disjoint subsets of U_N, then $P_N(A \cup B) = P_N(A) + P_N(B)$. Assume that the elements of U_N are integers and that P_N satisfies the following two properties: (i) for the elements $A(a)$ of U_N that are divisible by a, $P_N(A(a)) = g(a) + o(1)$ as $N \to +\infty$, where $g(a)$ is a multiplicative function and (ii) for any complex valued additive arithmetical function $f(n)$, the Turan-Kubilius inequality extends to the measure P_N as the argument n goes through U_N. Under these conditions, the reviewer proved [Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 18 (1971), 261–270; MR 45#5101] that if $f(n)$ above is real valued and if $B(x) = \{ n: n \in U_N, f(n) < x \}$, then as $N \to +\infty$, $\lim P_N(B(x)) = F(x)$ exists for all continuity points of $F(x)$. The author reobtains the following special case of this result: U_N is the set of all integers between N and $N + N^t$, where $0 < t < 1$ is fixed, and P_N is the relative frequency. Here assumption (i) is evident and the author makes assumptions to guarantee (ii).