Babu, Gutti Jogesh (6-ISI)

Estimation of density quantile function.

Let X_1, X_2, \cdots be an i.i.d. sequence of random variables with distribution function $F(x) = P(X_1 \leq x)$ and quantile function $Q(s) = \inf(x: F(x) \geq s)$. Consider likewise the empirical distribution function F_n and the empirical quantile function Q_n, based on X_1, \cdots, X_n. Assuming that F is k times continuously differentiable with $k \geq 2$, the author estimates $f(Q(s))$, where $f(x) = F'(x)$. His arguments are based on the Bahadur-Kiefer representation of sample quantiles and on approximations of empirical processes by Brownian bridges. Two theorems are proved for the limiting asymptotic joint normality of the estimators, and concerning the uniform convergence. A third theorem is provided when the sequence X_1, X_2, \cdots is φ-mixing and stationary.

Paul Deheuvels (Bourg-la-Reine)