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1 Introduction

Lemma 4 in our paper Bierens and Wang (2012) claims that, with Z(β) a
zero mean complex-valued continuous Gaussian process on a compact subset
B of a Euclidean space and µ a probability measure on B,

R
|Z(β)|2µ(dβ) =P∞

m=1 λme
0
mem, where the λm’s are the eigenvalues of the covariance function

E
h
Z(β1)Z(β2)

i
and the em’s are independently N2[0, I2] distributed. How-

ever, it follows from Mercer’s theorem that E
£R
|Z(β)|2µ(dβ)

¤
=
P∞

m=1 λm,
whereas Lemma 4 would imply that E

£R
|Z(β)|2µ(dβ)

¤
= 2

P∞
m=1 λm. Apart

from this obvious and embarrassing error, the flaw in the proof of Lemma 4
that has lead us to this erroneous result is the incorrect equation (A.6).

2 Lemma 4 revised

The following corrected version of Lemma 4 is closely related to Theorem 3
in Bierens and Ploberger (1997).

LEMMA 4 (Revised). Let Z(β) be a zero-mean complex-valued continu-
ous Gaussian process on a compact subset B of a Euclidean space, and let µ
be a probability measure on B. There exists a non-negative sequence ωm sat-
isfying

P∞
m=1 ωm < ∞ such that

R
|Z(β)|2µ(dβ) =

P∞
m=1 ωmε

2
m, where the

εm’s are independent standard normally distributed random variables. How-
ever, the ωm’s are in general not equal to the eigenvalues λm of the covariance
function of Z(β), but are related only by the equality

P∞
m=1 ωm =

P∞
m=1 λm.
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Proof. Let {λm}∞m=1 be the sequence of eigenvalues of the covariance kernel
Γ(β1, β2) = E

h
Z(β1)Z(β2)

i
with corresponding sequence {ψm(β)}∞m=1 of or-

thonormal eigenfunctions (relative to µ). By the completeness of {ψm(β)}∞m=1
we can write Z(β) =

P∞
m=1 gmψm(β) a.s. µ,

1 where gm =
R
Z(β)ψm(β)µ(dβ).

Consequently Z
|Z(β)|2µ(dβ) =

∞X
m=1

|gm|2. (1)

Since Z(β) is zero-mean Gaussian, the gm’s are jointly zero-mean complex-
valued normally distributed. Moreover, by Mercer’s theorem,

E [gkgm] =

Z Z
ψk(β2)E

h
Z(β2)Z(β1)

i
ψm(β1)µ(dβ1)µ(dβ2)

=

Z Z
ψk(β2)Γ(β1, β2)ψm(β1)µ(dβ1)µ(dβ2)

=
∞X
j=1

λj

Z Z
ψk(β2)ψj(β1)ψj(β2).ψm(β1)µ(dβ1)µ(dβ2)

=
∞X
j=1

λj

Z
ψk(β2)ψj(β2)µ(dβ2)

Z
ψj(β1)ψm(β1)µ(dβ1)

=
∞X
j=1

λj1(k = j).1(m = j)

= λm1(k = m), (2)

where 1(.) is the indicator function. As is well-known, due to joint normality
(2) implies that the sequence {gm}∞m=1 is independent, and so is the sequence
Gm = (Re[gm], Im[gm])

0.
EachGm is bivariate zero mean normally distributed, i.e.,Gm ∼ N2[0,Σm].

Using the well-known decompositionΣm = QmΩmQ0m,whereΩm = diag(ω1,m,
ω2,m) is the diagonal matrix of eigenvalues of Σm and Qm is the orthogonal
matrix of the two corresponding eigenvectors, we can write

Q0mGm =

µ √
ω1,me1.m√
ω2,me2.m

¶
,

where the sequence (e1.m, e2.m)0 is i.i.d. N2[0, I2]. Now

|gm|2 = gmgm = G0mGm = G0mQmQ0mGm = ω1,me
2
1.m + ω2,me

2
2.m

1I.e., µ ({β ∈ B : Z(β) =
P∞

m=1 gmψm(β)}) = 1.
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where ω1,m + ω2,m = λm, and by Mercer’s theorem,
∞X
m=1

ω1,m +
∞X
m=1

ω2,m =
∞X
m=1

E[gmgm] =
∞X
m=1

λm <∞.

Thus, (1) now readsZ
|Z(β)|2µ(dβ) =

∞X
m=1

ω1,me
2
1.m +

∞X
m=1

ω2,me
2
2.m.

Finally, denoting for m ∈ N, ω2m−1 = ω1,m, ω2m = ω2,m, ε2m−1 =
e1.m, ε2m = e2.m, for example, the result of the revised Lemma 4 follows.

Note that the erroneous Lemma 4 was actually a side issue and has no
consequences for the other results in the paper, except that the proof of the
local power in section 2.6 needs to be adjusted.
However, the question remains whether more can be said about the vari-

ance matrices Σm. In particular, the question is whether the Σm’s have a
particular case-independent structure, apart from being variance matrices
and satisfying

P∞
k=1trace[Σk] < ∞. The following example shows that the

answer is No! In other words, the revised Lemma 4 is complete.

3 An example

For β ∈ [0, 1], let

Z(β) =
∞X
m=1

(U1,m + i.U2,m)

× (cos(2mπβ) + i. sin(2mπβ))

=
∞X
m=1

(U1,m cos(2mπβ)− U2,m sin(2mπβ))

+i.
∞X
m=1

(U1,m sin(2mπβ) + U2,m cos(2mπβ))

where the sequence (U1,m, U2,m)0 is independentlyN2(0,Σm) distributed, with

λk = trace[Σk] > 0,
∞X
m=1

λm <∞.
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The latter condition implies that
R 1
0
|Z(β)|2dβ <∞ a.s.

Clearly, Z(β) is a zero-mean complex valued Gaussian process on [0, 1],
and after some tedious but elementary complex calculations (see the Appen-
dix) it can be shown that its covariance function takes the form

Γ(β1, β2) = E
h
Z(β1)Z(β2)

i
=

∞X
m=1

λm cos(2mπβ1) cos(2mπβ2)

+
∞X
m=1

λm sin(2mπβ1) sin(2mπβ2)

+i.
∞X
m=1

λm sin(2mπβ1) cos(2mπβ2)

−i.
∞X
m=1

λm cos(2mπβ1) sin(2mπβ2) (3)

The functions
√
2 cos(2mπβ),

√
2 sin(2kπβ), m, k ∈ N, together with the

constant function 1, are known as the Fourier series on [0, 1], which form a
complete orthonormal sequence in the real Hilbert space L2(0, 1). Therefore
the complex functions

ψk(β) = cos(2kπβ) + i. sin(2kπβ), k ∈ N, (4)

together with ψ0(β) ≡ 1, form an orthonormal sequence in the Hilbert space
L2C(0, 1) of square integrable complex valued functions on (0, 1).
Moreover, it is easy to verify2 that for k ≥ 1 the ψk(β)’s are the eigen-

functions of Γ(β1,β2) with corresponding eigenvalues λk, whereas ψ0(β) is
the eigenfunction corresponding to the (single) zero eigenvalue. Hence, by
Mercer’s theorem, the sequence {ψk(β)}∞k=0 is complete in L2C(0, 1).
Recall that in this case Z(β) =

P∞
m=1 gmψm(β) a.s. with respect to the

uniform probability measure on (0, 1), where now

gm =

Z 1

0

Z(β)ψm(β)dβ = U1,m + i.U2,m,

2See the Appendix below.
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hence, E [|gm|2] = trace[Σm] = λm, and

Gm =

µ
Re[gm]
Im[gm]

¶
=

µ
U1,m
U2,m

¶
∼ N2(0,Σm),

as in the revised Lemma 4 above.
Since in this example the only conditions on the Σm’s are that they are

variance matrices and satisfy
P∞

k=1trace[Σk] < ∞, the revised Lemma 4
above is indeed complete.
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Appendix
Proof of (3)
Without loss of generality we may focus on a single m, as follows.

[(U1,m cos(2mπβ1)− U2,m sin(2mπβ1))

+ i. (U1,m sin(2mπβ1) + U2,m cos(2mπβ1))
¤

× [(U1,m cos(2mπβ2)− U2,m sin(2mπβ2))

−i. (U1,m sin(2mπβ2) + U2,m cos(2mπβ2))]

= (U1,m cos(2mπβ1)− U2,m sin(2mπβ1))

× (U1,m cos(2mπβ2)− U2,m sin(2mπβ2))

+ (U1,m sin(2mπβ1) + U2,m cos(2mπβ1))

× (U1,m sin(2mπβ2) + U2,m cos(2mπβ2))

+ i. [(U1,m sin(2mπβ1) + U2,m cos(2mπβ1))

× (U1,m cos(2mπβ2)− U2,m sin(2mπβ2))

− (U1,m cos(2mπβ1)− U2,m sin(2mπβ1))

× (U1,m sin(2mπβ2) + U2,m cos(2mπβ2))
¤

= U21,m cos(2mπβ1) cos(2mπβ2) + U
2
2,m sin(2mπβ1) sin(2mπβ2)

+ U21,m sin(2mπβ1) sin(2mπβ2) + U
2
2,m cos(2mπβ1) cos(2mπβ2)

+ i.
£
U21,m sin(2mπβ1) cos(2mπβ2)− U22,m cos(2mπβ1) sin(2mπβ2)

− U21,m cos(2mπβ1) sin(2mπβ2) + U
2
2,m sin(2mπβ1) cos(2mπβ2)

¤
=
¡
U21,m + U

2
2,m

¢
(cos(2mπβ1) cos(2mπβ2) + sin(2mπβ1) sin(2mπβ2))

+i.
¡
U21,m + U

2
2,m

¢
(sin(2mπβ1) cos(2mπβ2)− cos(2mπβ1) sin(2mπβ2)) ,

where in the last two equalities we have used the fact that the terms involv-
ing the product U1,mU2.m cancel out. Taking expectations and applying the
summation

P∞
m=1 the result (3) follows.

Eigenvalues and eigenfunctions of (3)
As to the eigenfunctions of Γ(β1, β2), observe from (3) and the orthonormality
of the Fourier series thatZ 1

0

Γ(β1, β2)ψ0(β2)dβ2 =

Z 1

0

Γ(β1,β2)dβ2 = 0
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and for k ∈ N,Z 1

0

Γ(β1,β2)ψk(β2)dβ2

=
∞X
m=1

λm cos(2mπβ1)

Z 1

0

cos(2mπβ2) (cos(2kπβ2) + i. sin(2kπβ2)) dβ2

+
∞X
m=1

λm sin(2mπβ1)

Z 1

0

sin(2mπβ2) (cos(2kπβ2) + i. sin(2kπβ2)) dβ2

+i.
∞X
m=1

λm sin(2mπβ1)

Z 1

0

cos(2mπβ2) (cos(2kπβ2) + i. sin(2kπβ2)) dβ2

−i.
∞X
m=1

λm cos(2mπβ1)

Z 1

0

sin(2mπβ2) (cos(2kπβ2) + i. sin(2kπβ2)) dβ2

= λk cos(2kπβ1) + i.λk sin(2kπβ1) = λkψk(β1).
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