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Abstract

In this lecture I will review the integrated con-
ditional moment (ICM) test for functional form
of a conditional expectation model. This is a
consistent test: the ICM test has asymptotic
power 1 against all deviations from the null
hypothesis. Moreover, this test has non-trivial
v/n local power.

| will focus on the mathematical foundations
of the ICM approach, in particular the consis-
tency proof and the derivation of the asymp-
totic null distribution.



1 The Fourier transform of
a Borel measurable function

Let g(x) be a Borel measurable real function
on R*. The Fourier transform of g(z) relative
to a probability measure ux(.) on the Borel
sets in R” is defined by

o () = / exp (i.6'7) g(@)dpx (z), § = VT,

provided that [ |g(x)|dux(z) < oo.

LEMMAZ1: Let g;(x)and go(x) be Borel mea-
surable functions on R* satisfying [ |g1(z)|dpx(z)
< 00, [ |g2(2)|dpx(x) < oo, with Fourier
transforms o (£), w9 (£), respectively, rela-
tive to a probability measure 1(.) on the Borel
sets in R*. Then g(z) = ¢o(x) ass. pux(.),
e,

= {2 €R": gi(z) — go(x) = 0} =
px(Bo) = 1, ifand only if 1 (§) = 2 (£).



1. Let

ri(z) = max (0, g1(z) — ga(z)),
ro(x) = max (0, —g1(x) + go(z))
Then g1(x) — go(x) = r1(x) — ro() and
oxp (1.6'2) () dyax ()

=1(§) —¢2(§) =0
Substituting & = 0 yields

[ ri@dixt@) = [ rae)dxtn) = e >0
If ¢ = 0then ri(x) = ro(z) = 0as. u(.),

hence gi(z) = go(x) a.s. u(.).
Therefore, assume that ¢ > 0. Then we can

define the probability measures

om (B) =~ /B r(2)dpx (2), = 1,2,

with corresponding characteristic functions



Y () = / exp (3.£'y) dum (3)
-2 / exp (1.62) r(z)dpixe (z)

form = 1 2. But | havejust established that
Jexp (i.8'z) ri(x)dpux(z) = [exp (i.8'x) ro(x)dpx (),
hence 91 (§) = ¥ (§), Whlch by the unique-
ness of characteristic functions implies that vy (B)
= vy (B) for all Borel sets B C R*. It is now
an easy (ECON 501) exercise to verify that the
latter implies r1(x) = ro(x) a.s. ux(.), hence
g1(z) = ga(x) as. px(.).
Corollary:

LEMMA 2: Let U be arandom variable satis-
fying £ [|U]] < oo, and let X € R” be aran-
domvector If P[E(U|X) = 0] < 1thenthere
existsa £ € R¥suchthat E [U exp (i.£'X)] #
0.

Question: Where to look for sucha ¢ 7



LEMMA 3: If X is bounded then under the
conditions of Lemma 2, for each £ > 0 there
exists a ¢ satisfying ||£|| < e such that
E[Uexp (i.£'X)] # 0.

Proof: Let X € R. Then

ElUexp(i.£X)] = E|U

m!

m=0
o0 ,ngm

=) —-E[UX"]

m=0

Since E'[Uexp (1.£X)] # 0 for some £ we
must have that E/ [U.X™| # 0 for some integer
m > 0. Let mg be the smallest m for which
E[U.X™] # 0. Then
d™E U exp (ng)]‘

(€)™ -
which implies that £ [U exp (.6 X)| # 0 for
¢ = 0 arbitrarily close to zero.

— M [U.X™] % 0




LEMMA 4. Under the conditions of Lemma 3,
theset Sy = {£ € R* : E[U.exp (i.£'X)] = 0}
has Lebesgue measure zero and is nowhere dense.

Proof: Let k = 1 and & € Sy. Define Uy =
U exp (’LS()X) . Then P(E[U0|X] = O) < 1,
hence for an arbitrarily small € > 0 there exists
al e (—e,0)U(0,¢e) such that

E U exp (1.£0X) exp (1.£X)] # 0.
By continuity it follows now that for each &, €
So there exists an € > 0 such that

E¢ Syforall € € (& —e,&) U (&, & +¢) -
Consequently, in the case £ = 1, the set Sy Is
countable and is nowhere dense. In the general
case k > 1, .5, has Lebesgue measure zero and
IS nowhere dense.

More generally, we have:



LEMMA 5: Let w(u) be a real or complex
valued function of the type

(©,0)

wiw) = 3 (/s!) w

s=0
where |vs| < oo and at most a finite number

of ~,’s are zero. Then under the conditions of
Lemma 3, the set

So={¢eR": E[Uw (X)) =0}
has Lebesgue measure zero and is nowhere dense.

For example, let w(u) = cos(u) + sin(u), or
w(u) = exp(u).

The condition that the random vector X is
bounded can be get rid of by replacing X with
$(X), where ® is a Borel measurable bounded
one-to-one mapping, because the o-algebra gen-
erated by X is then the same as the o-algebra
generated by ®(.X'), hence conditioning on (X )
IS equivalent to conditioning on X.



THEOREM 1: Let U be a random variable
satisfying E [|U|] < oo and let X € R*¥ be a
random vector. Denote

S={(eR": EUw(?(X))] =0},
where w(.) is defined in Lemma 5, and ®(.) is
a Borel measurable bounded one-to-one map-
ping. If P [E(U|X)=0] < 1then S has
Lebesgue measure zero and is nowhere dense,
whereas if P|E(U|X)=0] = 1then § =
R~

2 The ICM test

Given a random sample (Y;, X,),j = 1,..,n
X; € R¥. and a conditional expectation model
E(Y;|X;) = g(Xj,6), by € O,
where © C R™ Is the parameter space, The-
orem 1 suggests to test the correctness of the
functional specification of this model on the

basis of following ICM statistic:



/ el

In this expression, (&) is an absolutely con-
tinuous (w.r.t. Lebesgue measure) probability
measure with compact support = C R*, and

n

2(¢) = % Z 0w (€3(X,)) .

where U; = Y;—g(X;, §), with 6 the NLLS es-
timator of 6y, ® is a bounded one-to-one map-
ping, and w(.) is a weight function satisfying
the conditions of Theorem 1.

More formally, the null hypothesis to be tested
IS that

Hy: There exists a 8, € © such that
PE(yjlz;) = g(xj,00)] = 1,
and the alternative hypothesis is that 4 is false:
H,. Forall g € 6,

P[E(yjlz;) = g(x;,0)] <1,



Under the null hypothesis and standard reg-
ularity conditions,

Vi (6-6,) = A 1fzaga)§’/9>

+0,(1)

Uj
0=0,

where
ag X],Q 89(X]79> /
A= Jﬂ&nz( 50" )( o0’

Hence, by the unlform law of large numbers,

50 = = > O (€0(X,)
= 2= > U (E9(X))
=3 (906,.0) — 9(X,.0)) w (€0(X,)

— % Z Ujg; (&) + 0p(1),

0=0,
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say, where

¢j (§) = w(£'D(X]))

/ ag(X ‘9)
. A 1 J?
b (§) T
with
B ) 1 - (9g(Xj,¢9) /
b<§>—p7}ggon; - H:%w@cb(X])),

and o,(1) is uniformin § € =.
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THEOREM 2: Under the null hypothesis and
some regularity conditions (one of these con-
ditions is that IS compact),

_ ﬁ ; Uiw (£'P(X;)) = 2(£) on =,

where z(£) is a zero-mean Gaussian process
on =, with covariance function

['(&1, &) = E'[2(1)2(82)] -

Hence by the continuous mapping theorem,

[EORn© ~ [ 1P dule)
Under the alternative that the null is false,

2(&)//n —, (&) uniformly on =, where n(£) #
0 except on a set with zero Lebesgue measure,

so that

() [ du&) = [ ) du(e) >0,

provided that s ( ) Is absolutely continuous w.rt.
Lebesgue measure and its support = has pos-
Itive Lebesgue measure.
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3 The null distribution of
the ICM test

If we choose the weight function w real-valued,
for example w(u) = cos(u)+sin(u), then z(§)
IS a real-valued zero-mean Gaussian process
on =, with real-valued covariance function

(61, 6) = Bl=(60)2(6)
— tim =SB [0, (61) 6 (&)

n—oo 1, 4

This covariance function is symmetric and pos-
itive semidefinite, in the following sense:

//w(fl)F(fl,SQW(fz)dﬂ (&1) dp (&2) > 0

for all Lebesgue integrable functions (&) on
=. Such functions have non-negative eigenval-
ues and corresponding orthonormal eigenfunc-
tions:

13



THEOREM 3: The functional eigenvalue prob-
lem [ T(&1, &) (&)du (&) = Aap(&) ae. on

= has a countable number of solutions

/ D(Er, ey (Ex)du (€2) = Ay-th;(€1)ae. on =,
S=1.2, ...

where
)\j > 0, Z)\] < 00,
j=1
=01f j1# )
: (&)d A .
[ot@vseane { ] 17
Moreover,

THEOREM 4 (Mercer’s Theorem): The co-
variance function I'(&1, &) can be written as

L&, &) = 2200 Ai(&)(&)-
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The sequence {1:(£)},-, is an orthonormal
basis for a Hilbert space H (u) of Lebesgue in-
tegrable functions on =, with inner product

(f.g) = / F(€)g(€)due).

so that every function f in H (1) can be written
as

f) = Z%%(f), Z’Yf < 00, Where

t=1 t=1
o= {fih), t=1,2,3,.....
It can be shown that z(&) is a random element

of H () , hence

o0

2€) = > zahi(€), where

t=1

2t = /:Z(f)%bt(f)dﬂ (5)7 t=123,..

Consequently,
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/\Z(f)leu(S)zf (Z%%(é)) dye (€)

:ZZ tlztg/wtl ¢t2(€)dﬂ (€>

X0 X0
2
— Ztlztz 2t
t=1

=1 to=
The sequence 2; IS a zero-mean Gaussian process,

with variance function

B[] = E ( JEGIE (5))2]
/ / &) (€ ) E2)dpn (€1) dpt (&)

:// (ZAJ’%(&)%(&)) Vi(&1)i(€2)

xdp (§1) dp (§2)
where the latter equality follows from Mercer’s
theorem.
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Thus by the orthonormality of the eigenfunc-

tions, N
- S(fuosioe)

Moreovet, bya |m|Iar argument it follows that
E 24, 2)] Z)\[ j=t) 1 =t)

= O If 11 7é to.
Hence, denoting &; = z;/v/A; if Ay > 0, we
have:

THEOREM5: [ |2(6)[* dp (€) = Y02, Aeef,
where the ¢;5arei.i.d. N(0,1)andthe \;5are
the eigenvalues of the covariance function I'.
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4 Critical values

The problem is that the eigenvalues \; are case-
dependent: They depend on the distribution of
the regressors, the functional form of the NLLS
model, and the conditional variance of the er-
rors. Therefore, the distribution of [ |2(¢)|” du ()
cannot be tabulated. A possible way to getaround
this problem is to bootstrap this distribution.
However, a convenient way to get around this
problem is to derive upper bounds of the criti-
cal values, as follows.

Without loss of generality we may assume
that the \;’s are positive and arranged in de-
creasing order. Moreover, it follows from Mer-
cer’s theorem that

[ T —]f; i [ wierdu e

PR

J=1
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THEOREM 6: Denoting p; = A/ Z;ﬁl oy
we have

f|Z M B - 2
JTE &du(€) ;p@
sup Zptgt

U Zt 1 Pt= 1t 1

:u—Zg_

m>1 1T

VAN

say,

so that asymptotic critical values can be de-
rived from the latter distribution. The actual
test statistic of the ICM test |s therefore
Py — J [2(¢ )| dp(€)
JT(E &)du(€)

where f(gl, &) isaconsistent estimator of I'(£5, &),
uniformly on = x =.
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5 Local power of the ICM
test

Consider the local alternative hypothesis
h(X;
HE: EIYIX,] = g(X,. ) +

Vn
where h (X)) is not constant:
Plh(X;) = E(h(Xj))] <1.
Then under HE,
2(€) = 2(6) +w(€) on E,
where z(£) is the same zero-mean Gaussian process
on = as before, and w(§) is a deterministic mean
function satisfying 0 < [ w(&)*du (£) < oo.
Similar to the case under the null hypothesis,
we can write

a.sS.,

28 +w() =) a6
where now -
Zt = Et\/_ At + Wt
withe;i.id. N(0,1)andw; = [ w(§) du (€).
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Hence,

[EORw© — 4 [ 120+ w(©)Pau(e
— i (5t\/)\_t+wt>2

t=1

THEOREM 7: The ICM test has nontrivial
v/n-local power, in the sense that for every K >
0,

P Z(et\/)\_t+wt)2§[(]
t=1
<P

Z )\tffg S K]
t=1
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Proof :
Let

C, = f: (5t\/)\_t+wt>2— (5n\/)\7n+wn)2
t=1

and suppose that w,, # 0. Then

p Z(et@+wt)2gK]
t=1
_p (gn\/Yn+wn)2gK—cnandcngK]
:P:_\/K_Cnggn\/A_n_i_wnS\/K_Cn
-andC’ngK]
<PPMK—@§%JE§MK—@
anangK]

=P[5?L)\n+0n < KandC, < K}

=P [5721)\n+0n < K}
where the inequality is due to the symmetry
and unimodality of the N (0, \,,) distribution.

The result of Theorem 7 follows now by in-
duction.
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