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Abstract
In this lecture I will review the integrated con-

ditional moment (ICM) test for functional form
of a conditional expectation model. This is a
consistent test: the ICM test has asymptotic
power 1 against all deviations from the null
hypothesis. Moreover, this test has non-trivial√
n local power.
I will focus on the mathematical foundations

of the ICM approach, in particular the consis-
tency proof and the derivation of the asymp-
totic null distribution.
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1 The Fourier transform of
a Borel measurable function
Let g(x) be a Borel measurable real function
on Rk. The Fourier transform of g(x) relative
to a probability measure µX(.) on the Borel
sets in Rk is defined by

ϕ (ξ) =

Z
exp (i.ξ0x) g(x)dµX(x), i =

√−1,
provided that

R |g(x)|dµX(x) <∞.
LEMMA 1: Let g1(x) and g2(x) be Borel mea-
surable functions on Rk satisfying

R |g1(x)|dµX(x)
< ∞, R |g2(x)|dµX(x) < ∞, with Fourier
transforms ϕ1 (ξ) , ϕ2 (ξ) , respectively, rela-
tive to a probability measure µ(.) on the Borel
sets in Rk. Then g1(x) = g2(x) a.s. µX(.),
i.e.,
B0 =

©
x ∈ Rk : g1(x)− g2(x) = 0

ª⇒
µX(B0) = 1, if and only if ϕ1 (ξ) ≡ ϕ2 (ξ) .
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Proof : Supposeϕ1 (ξ) ≡ ϕ2 (ξ) andµX(B0) <
1. Let

r1(x) = max (0, g1(x)− g2(x)) ,
r2(x) = max (0,−g1(x) + g2(x))

Then g1(x)− g2(x) = r1(x)− r2(x) andZ
exp (i.ξ0x) r1(x)dµX(x)

−
Z
exp (i.ξ0x) r2(x)dµX(x)

= ϕ1 (ξ)− ϕ2 (ξ) ≡ 0
Substituting ξ = 0 yieldsZ
r1(x)dµX(x) =

Z
r2(x)dµX(x) = c ≥ 0.

If c = 0 then r1(x) = r2(x) = 0 a.s. µ(.),
hence g1(x) = g2(x) a.s. µ(.).

Therefore, assume that c > 0. Then we can
define the probability measures

υm (B) =
1

c

Z
B

rm(x)dµX(x), m = 1, 2,

with corresponding characteristic functions
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ψm (ξ) =

Z
exp (i.ξ0y) dυm (y)

=
1

c

Z
exp (i.ξ0x) rm(x)dµX(x)

form = 1, 2. But I have just established thatR
exp (i.ξ0x) r1(x)dµX(x) ≡

R
exp (i.ξ0x) r2(x)dµX(x),

hence ψ1 (ξ) ≡ ψ2 (ξ) , which by the unique-
ness of characteristic functions implies that υ1 (B)
= υ2 (B) for all Borel sets B ⊂ Rk. It is now
an easy (ECON 501) exercise to verify that the
latter implies r1(x) = r2(x) a.s. µX(.), hence
g1(x) = g2(x) a.s. µX(.).

Corollary:

LEMMA 2: Let U be a random variable satis-
fying E [|U |] <∞, and let X ∈ Rk be a ran-
dom vector. If P [E(U |X) = 0] < 1 then there
exists a ξ ∈ Rk such that E [U exp (i.ξ0X)] 6=
0.

Question: Where to look for such a ξ ?
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LEMMA 3: If X is bounded then under the
conditions of Lemma 2, for each ε > 0 there
exists a ξ satisfying kξk < ε such that
E [U exp (i.ξ0X)] 6= 0.

Proof : LetX ∈ R. Then

E [U exp (i.ξX)] = E

"
U
∞X
m=0

imξmXm

m!

#

=

∞X
m=0

imξm

m!
E [U.Xm]

Since E [U exp (i.ξX)] 6= 0 for some ξ we
must have thatE [U.Xm] 6= 0 for some integer
m ≥ 0. Let m0 be the smallest m for which
E [U.Xm] 6= 0. Then
dm0E [U exp (i.ξX)]

(dξ)m0

¯̄̄̄
ξ=0

= im0E [U.Xm0] 6= 0
which implies that E [U exp (i.ξX)] 6= 0 for
ξ 6= 0 arbitrarily close to zero.
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LEMMA 4: Under the conditions of Lemma 3,
the set S0 =

©
ξ ∈ Rk : E [U. exp (i.ξ0X)] = 0ª

has Lebesgue measure zero and is nowhere dense.

Proof : Let k = 1 and ξ0 ∈ S0. Define U0 =
U exp (i.ξ0X) . Then P (E[U0|X ] = 0) < 1,
hence for an arbitrarily small ε > 0 there exists
a ξ ∈ (−ε, 0) ∪ (0, ε) such that

E [U exp (i.ξ0X) exp (i.ξX)] 6= 0.
By continuity it follows now that for each ξ0 ∈
S0 there exists an ε > 0 such that
ξ /∈ S0 for all ξ ∈ (ξ0 − ε, ξ0) ∪ (ξ0, ξ0 + ε) .

Consequently, in the case k = 1, the set S0 is
countable and is nowhere dense. In the general
case k ≥ 1, S0 has Lebesgue measure zero and
is nowhere dense.

More generally, we have:
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LEMMA 5: Let w(u) be a real or complex
valued function of the type

w(u) =
∞X
s=0

(γs/s!)u
s

where |γs| < ∞ and at most a finite number
of γs’s are zero. Then under the conditions of
Lemma 3, the set

S0 =
©
ξ ∈ Rk : E [U.w (ξ0X)] = 0ª

has Lebesgue measure zero and is nowhere dense.

For example, let w(u) = cos(u) + sin(u), or
w(u) = exp(u).

The condition that the random vector X is
bounded can be get rid of by replacingX with
Φ(X),whereΦ is a Borel measurable bounded
one-to-one mapping, because theσ-algebra gen-
erated by X is then the same as the σ-algebra
generated byΦ(X), hence conditioning onΦ(X)
is equivalent to conditioning onX .
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THEOREM 1: Let U be a random variable
satisfying E [|U |] <∞ and let X ∈ Rk be a
random vector. Denote
S =

©
ξ ∈ Rk : E [U.w (ξ0Φ(X))] = 0ª ,

where w(.) is defined in Lemma 5, and Φ(.) is
a Borel measurable bounded one-to-one map-
ping. If P [E(U |X) = 0] < 1 then S has
Lebesgue measure zero and is nowhere dense,
whereas if P [E(U |X) = 0] = 1 then S =
Rk.

2 The ICM test
Given a random sample (Yj,Xj), j = 1, .., n,
Xj ∈ Rk, and a conditional expectation model

E(Yj|Xj) = g(Xj, θ0), θ0 ∈ Θ,

where Θ ⊂ Rm is the parameter space, The-
orem 1 suggests to test the correctness of the
functional specification of this model on the
basis of following ICM statistic:
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Z
|bz(ξ)|2 dµ (ξ)

In this expression, µ (ξ) is an absolutely con-
tinuous (w.r.t. Lebesgue measure) probability
measure with compact support Ξ ⊂ Rk, and

bz(ξ) = 1√
n

nX
j=1

bUjw (ξ0Φ(Xj)) .
where bUj = Yj−g(Xj,bθ),withbθ the NLLS es-
timator of θ0, Φ is a bounded one-to-one map-
ping, and w(.) is a weight function satisfying
the conditions of Theorem 1.

More formally, the null hypothesis to be tested
is that

H0: There exists a θ0 ∈ Θ such that
P [E(yj|xj) = g(xj, θ0)] = 1,

and the alternative hypothesis is thatH0 is false:
H1: For all θ ∈ Θ,

P [E(yj|xj) = g(xj, θ)] < 1,
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Under the null hypothesis and standard reg-
ularity conditions,
√
n
³bθ − θ0

´
= A−1

1√
n

nX
j=1

∂g(Xj, θ)

∂θ0

¯̄̄̄
θ=θ0

Uj

+op(1)

where

A = p lim
n→∞

1

n

nX
j=1

µ
∂g(Xj, θ)

∂θ0

¶µ
∂g(Xj, θ)

∂θ0

¶0¯̄̄̄
θ=θ0

Hence, by the uniform law of large numbers,

bz(ξ) = 1√
n

nX
j=1

bUjw (ξ0Φ(Xj))
=

1√
n

nX
j=1

Ujw (ξ
0Φ(Xj))

− 1√
n

nX
j=1

³
g(Xj,bθ)− g(Xj, θ0)´w (ξ0Φ(Xj))

=
1√
n

nX
j=1

Ujφj (ξ) + op(1),
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say, where
φj (ξ) = w (ξ0Φ(Xj))

−b (ξ)0A−1 ∂g(Xj, θ)
∂θ0

¯̄̄̄
θ=θ0

with

b (ξ) = p lim
n→∞

1

n

nX
j=1

∂g(Xj, θ)

∂θ0

¯̄̄̄
θ=θ0

w (ξ0Φ(Xj)) ,

and op(1) is uniform in ξ ∈ Ξ.
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THEOREM 2: Under the null hypothesis and
some regularity conditions (one of these con-
ditions is that Ξ is compact ),

bz(ξ) = 1√
n

nX
j=1

bUjw (ξ0Φ(Xj))⇒ z(ξ) on Ξ,

where z(ξ) is a zero-mean Gaussian process
on Ξ, with covariance function

Γ(ξ1, ξ2) = E [z(ξ1)z(ξ2)] .

Hence by the continuous mapping theorem,Z
|bz(ξ)|2 dµ (ξ)→d

Z
|z(ξ)|2 dµ (ξ) .

Under the alternative that the null is false,bz(ξ)/√n→p η(ξ) uniformly on Ξ,where η(ξ) 6=
0 except on a set with zero Lebesgue measure,
so that
(1/n)

Z
|bz(ξ)|2 dµ (ξ)→p

Z
|η(ξ)|2 dµ (ξ) > 0,

provided that µ (ξ) is absolutely continuous w.r.t.
Lebesgue measure and its support Ξ has pos-
itive Lebesgue measure.
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3 The null distribution of
the ICM test
If we choose the weight functionw real-valued,
for examplew(u) = cos(u)+sin(u), then z(ξ)
is a real-valued zero-mean Gaussian process
on Ξ, with real-valued covariance function

Γ(ξ1, ξ2) = E [z(ξ1)z(ξ2)]

= lim
n→∞

1

n

nX
j=1

E
£
U 2j φj (ξ1)φj (ξ2)

¤
.

This covariance function is symmetric and pos-
itive semidefinite, in the following sense:Z Z

ψ(ξ1)Γ(ξ1, ξ2)ψ(ξ2)dµ (ξ1) dµ (ξ2) ≥ 0
for all Lebesgue integrable functions ψ(ξ) on
Ξ. Such functions have non-negative eigenval-
ues and corresponding orthonormal eigenfunc-
tions:
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THEOREM 3: The functional eigenvalue prob-
lem

R
Γ(ξ1, ξ2)ψ(ξ2)dµ (ξ2) = λ.ψ(ξ1) a.e. on

Ξ has a countable number of solutionsZ
Γ(ξ1, ξ2)ψj(ξ2)dµ (ξ2) = λj.ψj(ξ1)a.e. on Ξ,

j = 1, 2, .....

where

λj ≥ 0,
∞X
j=1

λj <∞,Z
Ξ

ψj1(ξ)ψj2(ξ)dµ (ξ)

½
= 0 if j1 6= j2
= 1 if j1 = j2

Moreover,

THEOREM 4 (Mercer’s Theorem): The co-
variance function Γ(ξ1, ξ2) can be written as
Γ(ξ1, ξ2) =

P∞
j=1 λjψj(ξ1)ψj(ξ2).
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The sequence {ψt(ξ)}∞t=1 is an orthonormal
basis for a Hilbert spaceH (µ) of Lebesgue in-
tegrable functions on Ξ, with inner product

hf, gi =
Z
f (ξ) g (ξ) dµ (ξ) .

so that every function f inH (µ) can be written
as

f (ξ) =
∞X
t=1

γtψt(ξ),
∞X
t=1

γ2t <∞, where

γt = hf,ψti , t = 1, 2, 3, .....
It can be shown that z(ξ) is a random element
ofH (µ) , hence

z(ξ) =
∞X
t=1

ztψt(ξ), where

zt =

Z
Ξ

z(ξ)ψt(ξ)dµ (ξ) , t = 1, 2, 3, ....

Consequently,

15



Z
|z(ξ)|2 dµ (ξ) =

Z Ã ∞X
t=1

ztψt(ξ)

!2
dµ (ξ)

=
∞X
t1=1

∞X
t2=1

zt1zt2

Z
ψt1(ξ)ψt2(ξ)dµ (ξ)

=
∞X
t1=1

∞X
t2=1

zt1zt2I (t1 = t2) =
∞X
t=1

z2t

The sequence zt is a zero-mean Gaussian process,
with variance function

E
£
z2t
¤
= E

"µZ
z(ξ)ψt(ξ)dµ (ξ)

¶2#
=

Z Z
E [z(ξ1)z(ξ2)]ψt(ξ1)ψt(ξ2)dµ (ξ1) dµ (ξ2)

=

Z Z ⎛⎝ ∞X
j=1

λjψj(ξ1)ψj(ξ2)

⎞⎠ψt(ξ1)ψt(ξ2)

×dµ (ξ1) dµ (ξ2)
where the latter equality follows from Mercer’s
theorem.
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Thus by the orthonormality of the eigenfunc-
tions,

E
£
z2t
¤
=

∞X
j=1

λj

µZ
ψj(ξ)ψt(ξ)dµ (ξ)

¶2
=

∞X
j=1

λjI (j = t) = λt.

Moreover, by a similar argument it follows that

E [zt1zt2] =
∞X
j=1

λjI (j = t1) I (j = t2)

= 0 if t1 6= t2.
Hence, denoting εt = zt/

√
λt if λt > 0, we

have:

THEOREM 5:
R |z(ξ)|2 dµ (ξ) =P∞t=1 λtε2t ,

where the εt’s are i.i.d. N(0, 1) and the λt’s are
the eigenvalues of the covariance function Γ.
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4 Critical values
The problem is that the eigenvaluesλt are case-
dependent: They depend on the distribution of
the regressors, the functional form of the NLLS
model, and the conditional variance of the er-
rors. Therefore, the distribution of

R |z(ξ)|2 dµ (ξ)
cannot be tabulated. A possible way to get around
this problem is to bootstrap this distribution.
However, a convenient way to get around this
problem is to derive upper bounds of the criti-
cal values, as follows.

Without loss of generality we may assume
that the λt’s are positive and arranged in de-
creasing order. Moreover, it follows from Mer-
cer’s theorem thatZ

Γ(ξ, ξ)dµ (ξ) =
∞X
j=1

λj

Z
ψj(ξ)

2dµ (ξ)

=

∞X
j=1

λj
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THEOREM 6: Denoting pt = λt/
P∞

j=1 λj,
we haveR |z(ξ)|2 dµ (ξ)R
Γ(ξ, ξ)dµ (ξ)

=
∞X
t=1

ptε
2
t

≤ sup
p1≥p2≥.....,

P∞
t=1 pt=1

∞X
t=1

ptε
2
t

= sup
m≥1

1

m

mX
i=1

ε2i = T ,

say,

so that asymptotic critical values can be de-
rived from the latter distribution. The actual
test statistic of the ICM test is thereforebTICM = R |bz(ξ)|2 dµ(ξ)R bΓ(ξ, ξ)dµ(ξ) ,
where bΓ(ξ1, ξ2) is a consistent estimator ofΓ(ξ2, ξ2),
uniformly on Ξ× Ξ.
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5 Local power of the ICM
test
Consider the local alternative hypothesis

HL
1 : E[Yj|Xj] = g(Xj, θ0) +

h (Xj)√
n

a.s.,

where h (Xj) is not constant:
P [h (Xj) = E (h (Xj))] < 1.

Then underHL
1 ,bz(ξ)⇒ z(ξ) + ω(ξ) on Ξ,

where z(ξ) is the same zero-mean Gaussian process
onΞ as before, andω(ξ) is a deterministic mean
function satisfying 0 <

R
ω(ξ)2dµ (ξ) <∞.

Similar to the case under the null hypothesis,
we can write

z(ξ) + ω(ξ) =
∞X
t=1

ztψt(ξ)

where now
zt = εt

p
λt + ωt

with εt i.i.d. N(0, 1) andωt =
R
ω(ξ)ψt(ξ)dµ (ξ) .
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Hence,Z
|bz(ξ)|2 dµ (ξ) → d

Z
|z(ξ) + ω(ξ)|2 dµ (ξ)

=

∞X
t=1

³
εt
p

λt + ωt

´2

THEOREM 7: The ICM test has nontrivial√
n-local power, in the sense that for every K >

0,

P

" ∞X
t=1

³
εt
p

λt + ωt

´2
≤ K

#

< P

" ∞X
t=1

λtε
2
t ≤ K

#
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Proof :
Let

Cn =
∞X
t=1

³
εt
p

λt + ωt

´2
−
³
εn
p

λn + ωn

´2
and suppose that ωn 6= 0. Then

P

" ∞X
t=1

³
εt
p

λt + ωt

´2
≤ K

#
= P

∙³
εn
p

λn + ωn

´2
≤ K − Cn and Cn ≤ K

¸
= P

h
−
p
K − Cn ≤ εn

p
λn + ωn ≤

p
K − Cn

and Cn ≤ K
¤

< P
h
−
p
K − Cn ≤ εn

p
λn ≤

p
K − Cn

and Cn ≤ K
¤

= P
£
ε2nλn + Cn ≤ K and Cn ≤ K

¤
= P

£
ε2nλn + Cn ≤ K

¤
where the inequality is due to the symmetry
and unimodality of the N(0,λn) distribution.
The result of Theorem 7 follows now by in-
duction.
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