The Integrated Conditional Moment Test

Herman J. Bierens

Abstract

In this lecture I will review the integrated conditional moment (ICM) test for functional form of a conditional expectation model. This is a consistent test: the ICM test has asymptotic power 1 against all deviations from the null hypothesis. Moreover, this test has non-trivial \sqrt{n} local power.

I will focus on the mathematical foundations of the ICM approach, in particular the consistency proof and the derivation of the asymptotic null distribution.

1 The Fourier transform of a Borel measurable function

Let g(x) be a Borel measurable real function on \mathbb{R}^k . The Fourier transform of g(x) relative to a probability measure $\mu_X(.)$ on the Borel sets in \mathbb{R}^k is defined by

$$\varphi\left(\xi\right) = \int \exp\left(i.\xi'x\right)g(x)d\mu_X(x), \ i = \sqrt{-1},$$
 provided that
$$\int |g(x)|d\mu_X(x) < \infty.$$

LEMMA 1: Let $g_1(x)$ and $g_2(x)$ be Borel measurable functions on \mathbb{R}^k satisfying $\int |g_1(x)| d\mu_X(x) < \infty$, $\int |g_2(x)| d\mu_X(x) < \infty$, with Fourier transforms $\varphi_1(\xi)$, $\varphi_2(\xi)$, respectively, relative to a probability measure $\mu(.)$ on the Borel sets in \mathbb{R}^k . Then $g_1(x) = g_2(x)$ a.s. $\mu_X(.)$, i.e.,

$$B_0 = \left\{ x \in \mathbb{R}^k : g_1(x) - g_2(x) = 0 \right\} \Rightarrow$$

$$\mu_X(B_0) = 1, \text{ if and only if } \varphi_1(\xi) \equiv \varphi_2(\xi).$$

Proof: Suppose $\varphi_1(\xi) \equiv \varphi_2(\xi)$ and $\mu_X(B_0) < 1$. Let

$$r_1(x) = \max\left(0, g_1(x) - g_2(x)\right),$$
 $r_2(x) = \max\left(0, -g_1(x) + g_2(x)\right)$
Then $g_1(x) - g_2(x) = r_1(x) - r_2(x)$ and
$$\int \exp\left(i.\xi'x\right) r_1(x) d\mu_X(x)$$

$$- \int \exp\left(i.\xi'x\right) r_2(x) d\mu_X(x)$$

$$= \varphi_1\left(\xi\right) - \varphi_2\left(\xi\right) \equiv 0$$

Substituting $\xi = 0$ yields

$$\int r_1(x)d\mu_X(x) = \int r_2(x)d\mu_X(x) = c \ge 0.$$

If c = 0 then $r_1(x) = r_2(x) = 0$ a.s. $\mu(.)$, hence $g_1(x) = g_2(x)$ a.s. $\mu(.)$.

Therefore, assume that c > 0. Then we can define the probability measures

$$v_m(B) = \frac{1}{c} \int_B r_m(x) d\mu_X(x), \ m = 1, 2,$$

with corresponding characteristic functions

$$\psi_m(\xi) = \int \exp(i.\xi'y) dv_m(y)$$
$$= \frac{1}{c} \int \exp(i.\xi'x) r_m(x) d\mu_X(x)$$

for m=1,2. But I have just established that $\int \exp{(i.\xi'x)} \, r_1(x) d\mu_X(x) \equiv \int \exp{(i.\xi'x)} \, r_2(x) d\mu_X(x)$, hence $\psi_1(\xi) \equiv \psi_2(\xi)$, which by the uniqueness of characteristic functions implies that $v_1(B) = v_2(B)$ for all Borel sets $B \subset \mathbb{R}^k$. It is now an easy (ECON 501) exercise to verify that the latter implies $r_1(x) = r_2(x)$ a.s. $\mu_X(.)$, hence $g_1(x) = g_2(x)$ a.s. $\mu_X(.)$.

Corollary:

LEMMA 2: Let U be a random variable satisfying $E[|U|] < \infty$, and let $X \in \mathbb{R}^k$ be a random vector. If P[E(U|X) = 0] < 1 then there exists a $\xi \in \mathbb{R}^k$ such that $E[U \exp(i.\xi'X)] \neq 0$.

Question: Where to look for such a ξ ?

LEMMA 3: If X is bounded then under the conditions of Lemma 2, for each $\varepsilon > 0$ there exists a ξ satisfying $\|\xi\| < \varepsilon$ such that $E[U \exp(i.\xi' X)] \neq 0$.

Proof: Let $X \in \mathbb{R}$. Then

$$E\left[U\exp\left(i.\xi X\right)\right] = E\left[U\sum_{m=0}^{\infty} \frac{i^{m}\xi^{m}X^{m}}{m!}\right]$$
$$= \sum_{m=0}^{\infty} \frac{i^{m}\xi^{m}}{m!} E\left[U.X^{m}\right]$$

Since $E[U \exp(i.\xi X)] \neq 0$ for some ξ we must have that $E[U.X^m] \neq 0$ for some integer $m \geq 0$. Let m_0 be the smallest m for which $E[U.X^m] \neq 0$. Then

$$\left. \frac{d^{m_0} E\left[U \exp\left(i.\xi X\right)\right]}{\left(d\xi\right)^{m_0}} \right|_{\xi=0} = i^{m_0} E\left[U.X^{m_0}\right] \neq 0$$

which implies that $E\left[U\exp\left(i.\xi X\right)\right] \neq 0$ for $\xi \neq 0$ arbitrarily close to zero.

LEMMA 4: Under the conditions of Lemma 3, the set $S_0 = \{ \xi \in \mathbb{R}^k : E[U.\exp(i.\xi'X)] = 0 \}$ has Lebesgue measure zero and is nowhere dense.

Proof: Let k=1 and $\xi_0 \in S_0$. Define $U_0=U\exp(i.\xi_0X)$. Then $P\left(E[U_0|X]=0\right)<1$, hence for an arbitrarily small $\varepsilon>0$ there exists a $\xi\in(-\varepsilon,0)\cup(0,\varepsilon)$ such that $E\left[U\exp\left(i.\xi_0X\right)\exp\left(i.\xi X\right)\right]\neq0$.

By continuity it follows now that for each $\xi_0 \in S_0$ there exists an $\varepsilon > 0$ such that

$$\xi \notin S_0$$
 for all $\xi \in (\xi_0 - \varepsilon, \xi_0) \cup (\xi_0, \xi_0 + \varepsilon)$.

Consequently, in the case k=1, the set S_0 is countable and is nowhere dense. In the general case $k \geq 1$, S_0 has Lebesgue measure zero and is nowhere dense.

More generally, we have:

LEMMA 5: Let w(u) be a real or complex valued function of the type

$$w(u) = \sum_{s=0}^{\infty} (\gamma_s/s!) u^s$$

where $|\gamma_s| < \infty$ and at most a finite number of γ_s 's are zero. Then under the conditions of Lemma 3, the set

$$S_0 = \{ \xi \in \mathbb{R}^k : E[U.w(\xi'X)] = 0 \}$$

has Lebesgue measure zero and is nowhere dense.

For example, let $w(u) = \cos(u) + \sin(u)$, or $w(u) = \exp(u)$.

The condition that the random vector X is bounded can be get rid of by replacing X with $\Phi(X)$, where Φ is a Borel measurable bounded one-to-one mapping, because the σ -algebra generated by X is then the same as the σ -algebra generated by $\Phi(X)$, hence conditioning on $\Phi(X)$ is equivalent to conditioning on X.

THEOREM 1: Let U be a random variable satisfying $E[|U|] < \infty$ and let $X \in \mathbb{R}^k$ be a random vector. Denote

 $S = \left\{ \xi \in \mathbb{R}^k : E\left[U.w\left(\xi'\Phi(X)\right)\right] = 0 \right\},$ where w(.) is defined in Lemma 5, and $\Phi(.)$ is a Borel measurable bounded one-to-one mapping. If $P\left[E(U|X) = 0\right] < 1$ then S has Lebesgue measure zero and is nowhere dense, whereas if $P\left[E(U|X) = 0\right] = 1$ then $S = \mathbb{R}^k$.

2 The ICM test

Given a random sample (Y_j, X_j) , j = 1, ..., n, $X_j \in \mathbb{R}^k$, and a conditional expectation model $E(Y_j|X_j) = g(X_j, \theta_0), \ \theta_0 \in \Theta$,

where $\Theta \subset \mathbb{R}^m$ is the parameter space, Theorem 1 suggests to test the correctness of the functional specification of this model on the basis of following ICM statistic:

$$\int |\widehat{z}(\xi)|^2 d\mu (\xi)$$

In this expression, $\mu(\xi)$ is an absolutely continuous (w.r.t. Lebesgue measure) probability measure with compact support $\Xi \subset \mathbb{R}^k$, and

$$\widehat{z}(\xi) = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \widehat{U}_{j} w \left(\xi' \Phi(X_{j}) \right).$$

where $\widehat{U}_j = Y_j - g(X_j, \widehat{\theta})$, with $\widehat{\theta}$ the NLLS estimator of θ_0 , Φ is a bounded one-to-one mapping, and w(.) is a weight function satisfying the conditions of Theorem 1.

More formally, the null hypothesis to be tested is that

 H_0 : There exists a $\theta_0 \in \Theta$ such that $P\left[E(y_j|x_j) = g(x_j,\theta_0)\right] = 1$, and the alternative hypothesis is that H_0 is false:

$$H_1$$
: For all $\theta \in \Theta$,
 $P\left[E(y_j|x_j) = g(x_j,\theta)\right] < 1$,

Under the null hypothesis and standard regularity conditions,

$$\sqrt{n}\left(\widehat{\theta} - \theta_0\right) = A^{-1} \frac{1}{\sqrt{n}} \sum_{j=1}^n \frac{\partial g(X_j, \theta)}{\partial \theta'} \Big|_{\theta = \theta_0} U_j + o_p(1)$$

where

$$A = p \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \left(\frac{\partial g(X_j, \theta)}{\partial \theta'} \right) \left(\frac{\partial g(X_j, \theta)}{\partial \theta'} \right)' \Big|_{\theta = \theta_0}$$

Hence, by the uniform law of large numbers,

$$\widehat{z}(\xi) = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \widehat{U}_{j} w \left(\xi' \Phi(X_{j}) \right)$$

$$= \frac{1}{\sqrt{n}} \sum_{j=1}^{n} U_{j} w \left(\xi' \Phi(X_{j}) \right)$$

$$- \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left(g(X_{j}, \widehat{\theta}) - g(X_{j}, \theta_{0}) \right) w \left(\xi' \Phi(X_{j}) \right)$$

$$= \frac{1}{\sqrt{n}} \sum_{j=1}^{n} U_{j} \phi_{j} \left(\xi \right) + o_{p}(1),$$

say, where

$$\phi_{j}(\xi) = w(\xi'\Phi(X_{j}))$$

$$-b(\xi)'A^{-1}\frac{\partial g(X_{j},\theta)}{\partial \theta'}\Big|_{\theta=\theta_{0}}$$

with

$$b(\xi) = p \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \frac{\partial g(X_j, \theta)}{\partial \theta'} \bigg|_{\theta = \theta_0} w(\xi' \Phi(X_j)),$$

and $o_p(1)$ is uniform in $\xi \in \Xi$.

THEOREM 2: Under the null hypothesis and some regularity conditions (one of these conditions is that Ξ is compact),

$$\widehat{z}(\xi) = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \widehat{U}_{j} w \left(\xi' \Phi(X_{j}) \right) \Rightarrow z(\xi) \text{ on } \Xi,$$

where $z(\xi)$ is a zero-mean Gaussian process on Ξ , with covariance function

$$\Gamma(\xi_1, \xi_2) = E[z(\xi_1)z(\xi_2)].$$

Hence by the continuous mapping theorem,

$$\int |\widehat{z}(\xi)|^2 d\mu(\xi) \to_d \int |z(\xi)|^2 d\mu(\xi).$$

Under the alternative that the null is false,

 $\widehat{z}(\xi)/\sqrt{n} \to_p \eta(\xi)$ uniformly on Ξ , where $\eta(\xi) \neq 0$

0 except on a set with zero Lebesgue measure,

so that

$$(1/n) \int |\widehat{z}(\xi)|^2 d\mu(\xi) \to_p \int |\eta(\xi)|^2 d\mu(\xi) > 0,$$

provided that $\mu(\xi)$ is absolutely continuous w.r.t. Lebesgue measure and its support Ξ has positive Lebesgue measure.

3 The null distribution of the ICM test

If we choose the weight function w real-valued, for example $w(u) = \cos(u) + \sin(u)$, then $z(\xi)$ is a real-valued zero-mean Gaussian process on Ξ , with real-valued covariance function

$$\Gamma(\xi_1, \xi_2) = E [z(\xi_1)z(\xi_2)]$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} E [U_j^2 \phi_j(\xi_1) \phi_j(\xi_2)].$$

This covariance function is symmetric and positive semidefinite, in the following sense:

$$\int \int \psi(\xi_1) \Gamma(\xi_1, \xi_2) \psi(\xi_2) d\mu(\xi_1) d\mu(\xi_2) \ge 0$$

for all Lebesgue integrable functions $\psi(\xi)$ on Ξ . Such functions have non-negative eigenvalues and corresponding orthonormal eigenfunctions:

THEOREM 3: The functional eigenvalue problem $\int \Gamma(\xi_1, \xi_2) \psi(\xi_2) d\mu(\xi_2) = \lambda. \psi(\xi_1)$ a.e. on Ξ has a countable number of solutions

$$\int \Gamma(\xi_1, \xi_2) \psi_j(\xi_2) d\mu(\xi_2) = \lambda_j. \psi_j(\xi_1) a.e. \text{ on } \Xi, \\ j = 1, 2,$$

where

$$\lambda_{j} \geq 0, \sum_{j=1}^{\infty} \lambda_{j} < \infty,$$

$$\int_{\Xi} \psi_{j_{1}}(\xi) \psi_{j_{2}}(\xi) d\mu(\xi) \begin{cases} = 0 & if \ j_{1} \neq j_{2} \\ = 1 & if \ j_{1} = j_{2} \end{cases}$$

Moreover,

THEOREM 4 (Mercer's Theorem): The covariance function $\Gamma(\xi_1, \xi_2)$ can be written as $\Gamma(\xi_1, \xi_2) = \sum_{j=1}^{\infty} \lambda_j \psi_j(\xi_1) \psi_j(\xi_2)$.

The sequence $\{\psi_t(\xi)\}_{t=1}^{\infty}$ is an orthonormal basis for a Hilbert space $\mathcal{H}(\mu)$ of Lebesgue integrable functions on Ξ , with inner product

$$\langle f, g \rangle = \int f(\xi) g(\xi) d\mu(\xi).$$

so that every function f in $\mathcal{H}\left(\mu\right)$ can be written as

$$f(\xi) = \sum_{t=1}^{\infty} \gamma_t \psi_t(\xi), \sum_{t=1}^{\infty} \gamma_t^2 < \infty, \text{ where}$$

$$\gamma_t = \langle f, \psi_t \rangle, \ t = 1, 2, 3, \dots...$$

It can be shown that $z(\xi)$ is a random element of $\mathcal{H}(\mu)$, hence

$$z(\xi) = \sum_{t=1}^{\infty} z_t \psi_t(\xi)$$
, where $z_t = \int_{\Xi} z(\xi) \psi_t(\xi) d\mu(\xi)$, $t = 1, 2, 3, ...$

Consequently,

$$\int |z(\xi)|^2 d\mu \,(\xi) = \int \left(\sum_{t=1}^{\infty} z_t \psi_t(\xi)\right)^2 d\mu \,(\xi)$$

$$= \sum_{t_1=1}^{\infty} \sum_{t_2=1}^{\infty} z_{t_1} z_{t_2} \int \psi_{t_1}(\xi) \psi_{t_2}(\xi) d\mu \,(\xi)$$

$$= \sum_{t_1=1}^{\infty} \sum_{t_2=1}^{\infty} z_{t_1} z_{t_2} I \,(t_1 = t_2) = \sum_{t=1}^{\infty} z_t^2$$

The sequence z_t is a zero-mean Gaussian process, with variance function

$$E\left[z_{t}^{2}\right] = E\left[\left(\int z(\xi)\psi_{t}(\xi)d\mu\left(\xi\right)\right)^{2}\right]$$

$$= \int \int E\left[z(\xi_{1})z(\xi_{2})\right]\psi_{t}(\xi_{1})\psi_{t}(\xi_{2})d\mu\left(\xi_{1}\right)d\mu\left(\xi_{2}\right)$$

$$= \int \int \left(\sum_{j=1}^{\infty} \lambda_{j}\psi_{j}(\xi_{1})\psi_{j}(\xi_{2})\right)\psi_{t}(\xi_{1})\psi_{t}(\xi_{2})$$

$$\times d\mu\left(\xi_{1}\right)d\mu\left(\xi_{2}\right)$$

where the latter equality follows from Mercer's theorem.

Thus by the orthonormality of the eigenfunctions,

$$E\left[z_{t}^{2}\right] = \sum_{j=1}^{\infty} \lambda_{j} \left(\int \psi_{j}(\xi) \psi_{t}(\xi) d\mu\left(\xi\right)\right)^{2}$$
$$= \sum_{j=1}^{\infty} \lambda_{j} I\left(j=t\right) = \lambda_{t}.$$

Moreover, by a similar argument it follows that

$$E[z_{t_1}z_{t_2}] = \sum_{j=1}^{\infty} \lambda_j I(j=t_1) I(j=t_2)$$

= 0 if $t_1 \neq t_2$.

Hence, denoting $\varepsilon_t = z_t/\sqrt{\lambda_t}$ if $\lambda_t > 0$, we have:

THEOREM 5: $\int |z(\xi)|^2 d\mu(\xi) = \sum_{t=1}^{\infty} \lambda_t \varepsilon_t^2$, where the ε_t 's are i.i.d. N(0,1) and the λ_t 's are the eigenvalues of the covariance function Γ .

4 Critical values

The problem is that the eigenvalues λ_t are casedependent: They depend on the distribution of the regressors, the functional form of the NLLS model, and the conditional variance of the errors. Therefore, the distribution of $\int |z(\xi)|^2 d\mu(\xi)$ cannot be tabulated. A possible way to get around this problem is to bootstrap this distribution. However, a convenient way to get around this problem is to derive upper bounds of the critical values, as follows.

Without loss of generality we may assume that the λ_t 's are positive and arranged in decreasing order. Moreover, it follows from Mercer's theorem that

$$\int \Gamma(\xi, \xi) d\mu(\xi) = \sum_{j=1}^{\infty} \lambda_j \int \psi_j(\xi)^2 d\mu(\xi)$$
$$= \sum_{j=1}^{\infty} \lambda_j$$

THEOREM 6: Denoting $p_{t} = \lambda_{t} / \sum_{j=1}^{\infty} \lambda_{j}$, we have $\frac{\int |z(\xi)|^{2} d\mu(\xi)}{\int \Gamma(\xi, \xi) d\mu(\xi)} = \sum_{t=1}^{\infty} p_{t} \varepsilon_{t}^{2}$ $\leq \sup_{p_{1} \geq p_{2} \geq \dots, \sum_{t=1}^{\infty} p_{t} = 1} \sum_{t=1}^{\infty} p_{t} \varepsilon_{t}^{2}$ $= \sup_{m \geq 1} \frac{1}{m} \sum_{t=1}^{m} \varepsilon_{i}^{2} = \overline{T},$

say,

so that asymptotic critical values can be derived from the latter distribution. The actual test statistic of the ICM test is therefore

$$\widehat{T}_{ICM} = \frac{\int |\widehat{z}(\xi)|^2 d\mu(\xi)}{\int \widehat{\Gamma}(\xi, \xi) d\mu(\xi)},$$

where $\widehat{\Gamma}(\xi_1, \xi_2)$ is a consistent estimator of $\Gamma(\xi_2, \xi_2)$, uniformly on $\Xi \times \Xi$.

5 Local power of the ICM test

Consider the local alternative hypothesis

$$H_1^L : E[Y_j|X_j] = g(X_j, \theta_0) + \frac{h(X_j)}{\sqrt{n}} \text{ a.s.,}$$

where $h(X_i)$ is not constant:

$$P\left[h\left(X_{j}\right)=E\left(h\left(X_{j}\right)\right)\right]<1.$$

Then under H_1^L ,

$$\widehat{z}(\xi) \Rightarrow z(\xi) + \omega(\xi) \text{ on } \Xi,$$

where $z(\xi)$ is the same zero-mean Gaussian process on Ξ as before, and $\omega(\xi)$ is a deterministic mean function satisfying $0<\int\omega(\xi)^2d\mu\,(\xi)<\infty$.

Similar to the case under the null hypothesis, we can write

$$z(\xi) + \omega(\xi) = \sum_{t=1}^{\infty} z_t \psi_t(\xi)$$

where now

$$z_t = \varepsilon_t \sqrt{\lambda_t} + \omega_t$$

with ε_t i.i.d. N(0,1) and $\omega_t = \int \omega(\xi) \psi_t(\xi) d\mu(\xi)$.

Hence,
$$\int |\widehat{z}(\xi)|^2 d\mu(\xi) \to d \int |z(\xi) + \omega(\xi)|^2 d\mu(\xi)$$

$$= \sum_{t=1}^{\infty} \left(\varepsilon_t \sqrt{\lambda_t} + \omega_t \right)^2$$

THEOREM 7: The ICM test has nontrivial \sqrt{n} -local power, in the sense that for every K > 0,

$$P\left[\sum_{t=1}^{\infty} \left(\varepsilon_t \sqrt{\lambda_t} + \omega_t\right)^2 \le K\right]$$

$$< P\left[\sum_{t=1}^{\infty} \lambda_t \varepsilon_t^2 \le K\right]$$

Proof:

Let

$$C_n = \sum_{t=1}^{\infty} \left(\varepsilon_t \sqrt{\lambda_t} + \omega_t \right)^2 - \left(\varepsilon_n \sqrt{\lambda_n} + \omega_n \right)^2$$

and suppose that $\omega_n \neq 0$. Then

$$P\left[\sum_{t=1}^{\infty} \left(\varepsilon_{t}\sqrt{\lambda_{t}} + \omega_{t}\right)^{2} \leq K\right]$$

$$= P\left[\left(\varepsilon_{n}\sqrt{\lambda_{n}} + \omega_{n}\right)^{2} \leq K - C_{n} \text{ and } C_{n} \leq K\right]$$

$$= P\left[-\sqrt{K - C_{n}} \leq \varepsilon_{n}\sqrt{\lambda_{n}} + \omega_{n} \leq \sqrt{K - C_{n}}\right]$$

$$= nd C_{n} \leq K$$

$$< P\left[-\sqrt{K - C_{n}} \leq \varepsilon_{n}\sqrt{\lambda_{n}} \leq \sqrt{K - C_{n}}\right]$$

$$= P\left[\varepsilon_{n}^{2}\lambda_{n} + C_{n} \leq K \text{ and } C_{n} \leq K\right]$$

$$= P\left[\varepsilon_{n}^{2}\lambda_{n} + C_{n} \leq K \text{ and } C_{n} \leq K\right]$$

$$= P\left[\varepsilon_{n}^{2}\lambda_{n} + C_{n} \leq K \text{ and } C_{n} \leq K\right]$$

where the inequality is due to the symmetry and unimodality of the $N(0, \lambda_n)$ distribution. The result of Theorem 7 follows now by induction.

6 Bibliography

Bierens, H. J. (1982): "Consistent Model Specification Tests", *Journal of Econometrics* 20, 105-134.

Bierens, H. J. (1984): "Model Specification Testing of Time Series Regressions", *Journal of Econometrics* 26, 323-353.

Bierens, H. J. (1990): "A Consistent Conditional Moment Test of Functional Form", *Econometrica* 58, 1443-1458.

Bierens, H. J. and W. Ploberger (1997): "Asymptotic Theory of Integrated Conditional Moment Tests", *Econometrica* 65, 1129-1151.

De Jong, R. M. (1996): "On the Bierens Test Under Data Dependence", *Journal of Econometrics* 72, 1-32.

Stinchcombe, M. B., and H. White (1998): "Consistent Specification Testing with Nuisance Parameters Present Only Under the Alternative", *Econometric Theory* 14, 295-325.