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1. Introduction

Let L,(k) be the maximum likelihood of a model with k parameters based on a sample of
size n, and let k, be the correct number of parameters. Suppose that for k > k, the model with k
parameters is nested in the model with k, parameters, so that L,(k,) is obtained by setting k -k,
parameters in the larger model to constants. Without loss of generality we may assume that these
constants are zeros. Thus, denoting the likelihood function of the least parsimonious model by
L), 6 € ©® c R",
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for k < m. Thus, the models with k < k, parameters are misspecified, and the models with
k > k, parameters are correctly specified but over-parametrized.
The Akaike (1974, 1976), Hannan-Quinn (1979), and Schwarz (1978) information

criteria for selecting the most parsimonious correct model are

Akaike: ¢, (k) = -2.In(L (K))/n + 2kin,
Hannan-Quinn: c,(k) = -2.In(L (K)/n + 2k.In(In(n))/n,
Schwarz: c,(k) = -2.In(L (K)/n + kiIn(n)/n,

respectively. Since the Schwarz information criterion is derived using Bayesian arguments, this
criterion is also known as the Bayesian Information Criterion (BIC).
These criteria take the general form
c,(k) = -2.In(L (K)/n + kp(n)/n, (2)
where ¢@(n) =2 in the Akaike case, @(n) = 2.In(In(n)) in the Hannan-Quinn case, and @(n) =
In(n) in the Schwarz case. Using these criteria, the model is selected that corresponds to

k = argmin,__c (k). (3)



2. Consistency
If k <k, then the model with k parameters is misspecified, so that
plim___In(L (k))/n < plim___In(L,(k,))/n. (4)
Hence, it follows from (2), (4) and lim___@(n)/n = 0 that in all three cases
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lim___Plc (k) > ¢ (K]
= lim__P[-2.In(L (k))/n + ky.@M)/n > -2.In(L (K)n + ko(n)/n] (5)
- lim__P[In(L, (k))/n - In(L (K))/n < 0.5(k,-K).o(n)/n] = O,

so that

IimnmP[kA < ko] < lim___P[c. (k) = c (k) for some k < k]

: (6)
< Xyg lim, Ple (k) > ¢, (K)] = 0

For k >k, it follows from the likelihood ratio test that

2L, (0) = IN(L0e))) =g Xy = T, ()

where -, indicates convergence in distribution. Then in the Akaike case,
n(cn(ko) - cn(k)) = 2(In(Ln(k)) - In(Ln(kO))) - 2(k-k,) -4 Xk’ko - 2(k-ky,),
hence
lim__Plc. (k) > c (K] = P[kak0 > 2(k-k,)] > 0.

Therefore, the Akaike criterion may asymptotically overshoot the correct number of parameters:

lim __P[k > k)] = 1, but lim__P[k > k] > 0,

Since in the Hannan-Quinn and Schwarz cases, lim___@(n) = «, (7) implies that in these
two cases
plimnm—z(ln(Ln(ko)) - In(Ln(k)))/cp(n) =0
hence
plim___n(c (k) - ¢, (K)/g(n) = plimnm—z(ln(Ln(ko)) - In(Ln(k)))/cp(n) + kyk = ky-k < -1
so that
lim___P[c (k) > c, (K] = 0.

This implies, similar to (6), that IimnmP[kA > k,] = 0. Thus, in the Hannan-Quinn and Schwarz

cases,



lim Pk = k] = 1. (8)
Note that the consistency result (8) holds for any criterion of the type (2) with
lim___e()/n =0 and lim___@(n) = «, (9)
for example, let @(n) = y/n.

3. Applications
3.1 VAR and AR model selection
Let L,(k) be the maximum likelihood of a d-variate Gaussian VAR(p) model,
Y=, + XLAY + U, U~ iid. Ng0,2],
where Y, € RY is observed for t = 1-p,....,n. Thenk =d + dp and
In(L, () = ~2nd - n.dIn2m) - %n.ln(det(ﬁp)),

where ip is the maximum likelihood estimator of the error variance X. Hence,

-2In(L,(K)/n = Indet(E)) + d(1 + In(2n)). (10)
The second term does not depend on p. Therefore, the model is selected that corresponds to
p = argminpcrYAR(p), where
Akaike: Gy (p) = In(det(X) + 2(d+dp)/n,
Hannan-Quinn: Co N(p) = In(det(S,)) + 2(d-+d?p)in(In(n))/n,
Schwarz: Gy (p) = In(det(X) + (d+dZp)in(n)/n.

Similarly, these criteria can also be used to determine the order p of an AR(p) model:
Yo = o + XaY, + Uy, U~ iid. N[0,67],
where again Y, € R isobserved for t = 1-p,....,n, simply by replacing d with 1 and det(ip)

with the ML estimator c“sf, of the error variance ¢°:

Akaike: can(p) = In(52) + 2(1+p)in,
Hannan-Quinn: c,fR(p) = |n(6§) + 2(1+p)In(In(n))/n,
Schwarz: can(p) = In(&2) + (L+p)In(n)/n.

3.2  ARMA model specification
Similarly, in the ARMA(p,q) case

Yo =0+ DY + U - ZLBU Uy~ iid N[0,67,



these criteria become

Akaike: CaA(p.0) = IN(G5.) + 2(L+pa)in,
Hannan-Quinn: anRMA(p,q) = In(&éq) + 2(L+p+qg)In(In(n))/n,
Schwarz: c,fRMA(p,q) = In(c“s;q) + (L+p+q)In(n)/n,

A

where now &, is the ML estimator of the error variance o2 and n is the number of observations
used in the ML estimation.

It can be shown [see Hannan (1980)] that in the case of common roots in the AR and MA
polynomials the Hannan-Quinn and Schwarz criteria still select the correct orders p and g
consistently: Given upper bounds p > p, and g > ¢, where p,and g, are the correct orders of
an ARMA(p,q) process, we have lim___P[p = p,, 4 = q,] = 1, where

(B.4) = argming. oo .o Ca o (p.0).

3.3  ARCH and GARCH models

If a model is extended to include ARCH or GARCH errors, it is recommended to subtract
theterm 1 + In(2n) from -2.In(L (k))/n [see (10)] in the formula for the information criteria,
in order to make these criteria comparable with those for the model without (G)ARCH errors.
Thus,

Akaike: ¢ PNy = ~2.In(L () + 2kin - 1 - In(2x),
Hannan-Quinn: ¢ PNy = ~2.n(L ()n + 2kIn(In(n))/n - 1 - In(2x),
Schwarz: ¢\ PNy = ~2.n(L, ()N + kiIn()yn - 1 - In(2n),

where again k is the number of parameters, including the (G)ARCH parameters.
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