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Multiresolution Image Classification by Hierarchical
Modeling with Two-Dimensional Hidden
Markov Models
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Abstract—This paper treats a multiresolution hidden Markov ~ ventional block-based classification algorithms. In this paper, a
model for classifying images. Each image is represented by feature multiresolution extension of the 2-D HMMs described in [25]
vectors at several resolutions, which are statistically dependent is proposed so that more global context information can be used

as modeled by the underlying state process, a multiscale Markov . . . . . .
mesh. Unknowns in the model are estimated by maximum likeli- efficiently. A joint decision on classes for the entire image is

hood, in particular by employing the expectation-maximization Nneeded to classify optimally an image based on the 2-D HMM
algorithm. An image is classified by finding the optimal set of [25]. Inreallife, however, because of computational complexity,

states with maximum a posteriori probability. States are then e have to divide an image into subimages and ignore statistical
mapped into classes. The multiresolution model enables multiscale dependence among the subimages. With the increase of model

information about context to be incorporated into classification. lexity. it i to d the si f1h bi
Suboptimal algorithms based on the model provide progressive complexity, 1t 1s necessary to decrease tne size or the subim-

classification that is much faster than the algorithm based on ages to preserve modest computational feasibility. Instead of
single-resolution hidden Markov models. using smaller subimages, a classifier based on the multiresolu-
Index Terms—EM algorithm, image classification, image seg- tion model retains tractability by representing context informa-

mentation, multiresolution hidden Markov model, tests of good- tion hierarchically.
ness of fit. With a 2-D multiresolution hidden Markov model (MHMM),

an image is taken to be a collection of feature vectors at several
resolutions. These feature vectors at a particular resolution are
determined only by the image at that resolution. The feature vec-
ECENT years have seen substantial interest and activity's across all the resolutions are generated by a multiresolution
devoted to algorithms for multiresolution processing [16Markov source [35], [18]. As with the 2-D HMM, the source ex-
[37]. One reason for this focus on image segmentation is thets in a state at any block at any resolution. Given the state of a
multiresolution processing seems to imitate the decision prodgieck at each particular resolution, the feature vector is assumed
dure of the human visual system (HVS) [28]. For example, whes have a Gaussian distribution so that the unconditional distri-
the HVS segments a picture shown in Fig. 1 into a foregroumdtion is a Gaussian mixture. The parameters of each Gaussian
region (a fox) and a background region, the foreground can #igtribution depend on both state and resolution. At any fixed
located roughly by a brief glance, which is similar to viewing @esolution, as with the 2-D HMM, the probability of the source
low-resolution image. As is shown in Fig. 1(b), the crude decéntering a particular state is governed by a second-order Markov
sion leaves only a small unsure area around the boundary. Fyesh [1]. Unlike the HMM, there are multiple Markov meshes
ther careful examination of details at the boundary results in theone resolution whose transition probabilities depend on the
final decision as to what is important in the image. Both globatates of parent blocks.
and local information are used by the HVS, which distributes Many other multiresolution models have been developed to
effort unevenly by looking at more ambiguous regions at highegpresent statistical dependence among image pixels, with wide
resolutions than it devotes to other regions. applications in image segmentation, denoising, restoration, etc.
Context-dependent classification algorithms based on two-Gihe multiscale autoregressive model proposed by Basseville
mensional hidden Markov models (2-D HMMs) have been det al. [3], the multiscale random field (MSRF) proposed by
veloped [14], [24], [25] to overcome the overlocalization of corBouman and Shapiro [7], and the wavelet-domain HMM pro-
posed by Crouset al.[11] is discussed and compared with the

2-D MHMM in Section Il after necessary notation is introduced
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Fig. 1. The segmentation process of the human visual system. (a) Original image. (b) A rough segmentation with the gray region being undecidguhgd) The
segmentation.

< [ porove el s L ol
AU it , nﬂ %— 1
A3 e L= |
o E el S o iEE
8 f‘: ‘ b A1 A
-(' : " 15 5.
B nk : LN !
0 Ey A
; :
1, Ty
ey Virent (s be TRIIFT
3 e ¢ Arles
&’—ﬂ:— ' Vincent Van Gogh
{1 x ©
Xi, | i |

Fig. 2. Multiple resolutions of an image.

relaxed. The progressive classifier is inspired by the human vi-
sual system to examine higher resolutions selectively for more
ambiguous regions.

In Section I, a mathematical formulation of the basic as-
sumptions of a 2-D multiresolution HMM is provided. Related
work on multiresolution modeling for images is discussed in
Section Ill. The algorithm is presented in Section IV. Fast algo-
rithms for progressive classification are presented in Section V.
Section VI provides an analysis of computational complexit§id- 3 The image hierarchy across resolutions.

Experiments with the algorithm are described in Section VII. ) o )
Section VIl is about hypothesis testing as it applies to detdfansforms [12] naturally provide low-resolution images in the
mining the validity of the MHMM. Conclusions are drawn inloW-frequency band (the LL band). A sequence of images at sev-
Section IX. eral resolutions is shown in Fig. 2. As subsampling is applied for
every reduced resolution, the image size decreases by a factor
of two in both directions. As is shown by Fig. 2, the number
of blocks in both rows and columns is successively diminished

To classify an image, representations of the image at differdat half at each lower resolution. Obviously, a block at a lower
resolutions are computed first. The original image correspondsolution covers a spatially more global region of the image.
to the highest resolution. Lower resolutions are generated Ay is indicated by Fig. 3, the block at the lower resolution is
successively filtering out high-frequency information. Wavelatferred to as a parent block, and the four blocks at the same

Il. BASIC ASSUMPTIONS OFR2-D MHMM
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spatial location at the higher resolution are referred to as child « P {3521)’ UEQJ) (i, j) € N@)‘ 3;13; (k1) € N(l)}
blocks. We will always assume such a “quadtree” splitin the se- ’ ’ ’
quel since the training and testing algorithms can be extended XX P {SE,R})’ Ugﬁ)i (i, 4) € N
easily to other hierarchical structures. (R—1). (R—1)

We first review the basic assumptions of the single-resolu- ‘Sk,l (k) €N } 1)
tion 2-D HMM as presented in [25]. In the 2-D HMM, feature

vectors are generated by a Markov model that may change sé%he coarsest resolution, = 1, feature vectors are assumed

once every block. Suppose there Afestates, the state of blockto EI" ?_ene;ﬁted bi/j_‘? smglglde_—rte_sbolrtlon f2[]2 HLVIM' Atf‘ hlgher
(i, j) being denoted by, ;. The feature vector of block, ) resolution, the conditional distribution of a feature vector given

isu; ;, and the class ig;, ;. We useP(-) to represent the prob- its stat_e is a_llsq as_sumed to be Gaussian. The parame_ters of the

abilijcy of an event. Weydenote", 7)< (6, 4)if i < ior Gaqssmn distribution depend upon the state at the particular res-

¢ =1, 7/ < j, in which case we say that blo¢K, ;') is before qu'upn. . .

block (i, 7). The first assumption is that Given the states at. resolutlcm—_ 1., statlstlcgl depen.de'nce

among blocks at the finer resolutieris constrained to sibling

P(s;, ;| contex) = ay, .1, blocks (child blocks descended from the same parent block).

’ o Specifically, child blocks descended from different parent
blocks are conditionally independent. In addition, given the

q State of a parent block, the states of its child blocks are inde-

assumption is that for every state, the feature vectors foIIOV\PSndent of the states of their “uncle” blocks (nonparent blocks

Gaussian distribution. Once the state of a block is known, tﬁ&the parent resolution). State trans_itions among sibling blocks
feature vector is conditionally independent of information ifire governed by the same Markovian property assumed for a

other blocks. The covariance matd and the mean vecter, f]mgle—resglunm:j2-Dtrll-|Mlt\/I.tTh]?trs]tgte tranilglon lf r_?b?b|l|t|els,t
of the Gaussian distribution vary with state Owever, depend on the state of their parént biock. 1o formulate

For the MHMM, denote the collection of resolutions By— these assumptions, denote the child blocks at resolutioh

{1, ..., R}, with » = R being the finest resolution. Let thebIOCk(k’ f) at resolution- — 1 by
collection of block indices at resolutianbe

context={sy" j/, w2 (¢, j) < (4, j)}

wherem = s,_1 ;, n = s; ;—1, andl = s; ;. The secon

D(k, 1) = {(2k, 20), (2k + 1, 20),
N = {(i, j): 0 < i <w/287,0< j < z/2877) (2k, 204+1), (2k+ 1, 20+ 1)}

Images are described by feature vectors at all the resolutioff§cording to the assumptions
denoted byu{"), » € R. Every feature vector is labeled with . )

") T : 5 P{s@; (i, ) € N
a class; ;. The underlying state of a feature vectoreiﬁj. At EER
each resolution, the set of states i1, 207 ... M. = H P {3573 (i, 5) € D(k, 1) ‘s;";” }
Note that as states vary across resolutions, different resolutions (k, DENG—D)
do not share states.

As with the single-resolution model, each state at every re§here
olution is uniquely mapped to one class. On the other hand, a
block with a known class may exist in several states. Since a
block "’?t a Ipwer resolution contains several blocks at a high 4n be evaluated by transition probabilities conditioned on
resolution, it may not be of a pure class. Therefore, except faf—1 —1

) (r-1) i
the highest resolution, there is an extra “mixed” class in addig-! denqt_ed by, "’.l.(‘?k:l ). We thus have a different
. L - et of transition probabilities,, ,, ; for every possible state
tion to the original classes. Denote the set of original classes.by : T “ "
the parent resolution, and so for the “state process” the

b H ” In
g ={L,2,..., G} and the "mixed" class by + 1. Because re%?lutions are “minimal” in the sense of Pérez and Heitz [33,

of the unique mapping between states and classes, the stat]g . . : . .
) : . roposition 1]. The influence of previous resolutions is exerted
a parent block may constrain the possible states for its chjld

: S rarchically through the probability of the states, which can
blocks. If the state of a parent block is mapped to adetermmgéle visualized in Fig. 4. The joint probability of states and

(nonmixed) class, the child blocks can exist only in states tr\%ature vectors at all the resolutions in (1) is then derived as
map to the same class.

To structure statistical dependence among resolutions, Pa{ ry G
Markov chain with resolution playing a time-like role is A
assumed in the 2-D MHMM. Given the states and the features — p {351
at the parent resolution, the states and the features at the current ’
resolution are conditionally independent of the other previous

R
G R (r—1)
resolutions, so that <II 11 r {Su (¢, j) € Dk, 1) ‘Sk,l }
=2 (k, DENT—
s}

S (D eNOD )

P{s"): (i, ) € D(k, D]sy Y}

G eR, (4, ) € N(”)}
J

):
) a6, j) € N<1>}

P{s\), ul)ir e R.(i, j) e NO

6,37 g

= P{s(l) w: (i, 7) € N(l)}

X H P {u(r)»

i, J
(i, 7)ED(k, 1)

1,50 7,
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Resolution 1 resolutionr areC™, » = 1, ..., R. The first assumption of
the MSRF is the Markovian property across resolutions, i.e.,

P (C(”) =MW =9 1< 7’)

Resolution 2 _p (C(r) — ™

-1 — c<"—1>) )

The second assumption is the exclusive dependencé oh
CH | that is,

P(X € da:‘C(”) =M r=1,..., R)
:P(X c dx‘C'(R) - c<R>).

esolution 3
& - -- b For segmentation, the models are restricted to two properties
regardingC”, » = 1, ..., R. First, the individual classes in
Fig. 4. The hierarchical statistical dependence across resolutions. c) are conditionally independent given the classagiL).

Second, each class @) depends only on classes in a neigh-
To summarize, a 2-D MHMM reflects both the interscale anidorhood at the coarser resolution- 1.
intrascale statistical dependence. The interscale dependence There are three key differences between our 2-D MHMMs
modeled by the Markov chain over resolutions. The intrasca@d the MSRF models for segmentation [7]. First, in the MSRF,
dependence is modeled by the HMM. At the coarsest resolutidgatures are observed solely at the finest resolution. The coarser
feature vectors are assumed to be generated by a 2-D HMM.r&éolutions figure only in prior probabilities of classes. For many
all the higher resolutions, feature vectors of sibling blocks aegplications of image classification [37], [26], it has been found
also assumed to be generated by 2-D HMMs. The HMMs vatlyat combining features extracted from several resolutions im-
according to the states of parent blocks. Therefore, if the ngx¢bves classification. In Section VII, experiments also demon-
coarser resolution hag states, then there are, correspondinglgtrate the gain in performance that owes to multiresolution fea-
M HMMs at the current resolution. The motivation for havingures. Second, states and classes are not distinguished by the
both the inter- and intrascale dependence is discussed in Seci8RF in that every class is considered as one state. At the
[1l. Experiments in Section VII show the influence of both typefinest resolution, the conditional distribution of feature vectors
of dependence. given a state is a Gaussian mixture. It is shown [39] that such
an HMM is equivalent to a special case of the HMM we as-
Ill. RELATED WORK sumed, in which every class contains several states, each cor-
?sponding to a component of the Guassian mixture. On the
ther hand, in general, an HMM with multiple states in one
lass and Gaussian distributions conditioned on states cannot
e converted to an HMM with a single state in every class and a
Gaussian mixture distribution given each state. Third, the MSRF
assumes statistical dependence only across resolutions. In the
2-D MHMM, however, since sibling blocks are dependent given
the state of their parent block, interscale and intrascale depen-
X0 = (X0, §): (i, ) e NOY dence can be balanced flexibly. With only the interscale de-
Define a coarse-scale shift operatoto reference thgparent Pendence, a multiresolution model implies that a parent node
node, ands* to reference the “ancestor” nodelevels higher. completely summarizes context information for its child nodes.

A variety of multiresolution models have been proposed 0
the purpose of incorporating relatively global information int@
image classification. One early work in this direction is the muE
tiscale autoregressive model proposed by Bassesfili. [3].
Suppose images are representedibsesolutions, withr = 1
being the coarsest resolution. Pixel intensities at resolutare
denoted by

Specifically, However, this assumption need not be true in practice, even ap-
ko ok ok proximately. In fact, for many applications, information useful
s"(é, J) = ([i/2°], 5/2°])- for distinguishing classes is embedded in relatively high-fre-
A homogeneous multiscale autoregressive model has the prqpency bands. As a result, when the resolution is sufficiently
erty that low, a parent node cannot provide any helpful context informa-
2 (i, §) = ar 12"V (s(d, ) + ar0e (S (6, ) ton.

)ty P A 2-D MHMM provides a mechanism to trade interscale and
oot ezt (8T g) FwlE J), e €R O rascale dependence according to applications. For example,
wherew(i, j) is an independent white driving noise. suppose the number of blocks at the finest resolution that a
As with autoregressive models in other contexts, this modglstem intends to classify jointly i8 x 8. If the HMM as-
entails a rather constrained dependence, here across resoluteumsed for feature vectors at the coarsest resolution examines
Recent work has generalized the cross resolution dependefce 2 blocks jointly, we need a three-resolution model with
by introducing Gaussian mixture models [7] or hidden Markoguadtree split. If the HMM at the coarsest resolution examines
models [11]. Bouman and Shapiro proposed the multiscalex 4 blocks jointly, we then need a two-resolution model with
random field (MSRF) model for images. Suppose an imagedsadtree split. Another setup of a two-resolution model might
described by a random field . The pixel labels (or classes) atbe to replace the quadtree split by & 4 split and assume an
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E rithm based on 2-D MHMMs. As the number of states and the
| way of extracting features are allowed to vary with resolution,
_ it is flexible enough to incorporate multiscale information for
HE_ classification using 2-D MHMMs.
T E In computer vision, there has been much work on learning
vision by image modeling [20], [22], [17]. Particularly, in [17],

multiresolution modeling is applied to estimate motions from
. - ' image frames. Bayesian network techniques [5], [32], [19] have

|
B

e =
—-——
-

played an important role in learning models in computer vi-
sion. Theories of Bayesian networks also provide guidance on
how to construct models with tractable learning complexity.
b Exact inference on general Bayesian networks is NP-hard, as
@ () © discussed by Cooper [10]. Computationally efficient algorithms
Fig. 5. Three possible structures of MHMMs on&rx 8 grid of blocks. (a)  for training a general Bayesian network are not always avail-
a three-level MHMM with quadtree split and the coarsest resolution modele le. A h d 2-D MHMMs b di 1-D
by an HMM on a2 x 2 grid. (b) a two-level MHMM with quadtree split and dble. As we . ave constructe e .S. y eXten. ing 1-
the coarsest resolution modeled by an HMM o# & 4 grid. (c) a two-level HMMSs used in speech recognition [39], efficient algorithms for
MHMM with 4 x 4 split and the coarsest resolution modeled by an HMM on fraining and applying 2-D MHMMs are derived from the ex-
2 2 grid. pectation-maximalization (EM) algorithm [13] and related tech-
nigues developed for speech recognition.

HMM on 2 x 2 blocks at the coarse resolution. The three possi-
bilities of the MHMM are shown in Fig. 5. All the parameters in
the model structure setup can be chosen conveniently as inputs [V. THE ALGORITHM
to algorithms for training and testing.

Another multiresolution model based on HMMs is the modeel
proposed for wavelet coefficients by Crousteal. [11], where

The parameters of the multiresolution model are estimated it-
ratively by the EM algorithm [13]. To ease the enormous com-

let Hicient luti dtob utational burden, we apply a suboptimal estimation procedure:
wavelet coetiicients across resolutions are assumed 10 D€ iy e, training algorithm [39]. At every iteration, the com-

e_rated _by one—d_imen_sional h?dden Markov mod_els with re,SOIanation of states at all the resolutions with the maximaupos-
tion ble![ng tr}_? t.'mf'“ke role 'ml the MarI;ofv cthaln. IIhwe vu(ejw eriori (MAP) probability is searched by the Viterbi algorithm
wavelet coetlicients as special cases of 1eatures, the mode g]. These states are then assumed to be real states to update the

[11] c_ortmderf f(ejaturez obse_r ved tat m“'“%'.e r((jeso![lrjlt!oni.l H?_ stimation of parameters. Because of the multiple resolutions, a
ever, intrascale dependence is not pursued in depth in [11]. tain part of the training algorithm used for the single-resolu-

wavelet-domain model is applied to image segmentation [9] apgd, HVIM [25] is changed to a recursive procedure. For com-

is extended to general fegtures in [29]. . . pleteness, we present the EM algorithm for estimating the pa-
The approach of applying models to image segmentation iy eters of a 2-D HMM as described in [25]. Next, the EM esti-

[9] is different from that of Bouman and Shapiro [7] and our§yaion is approximated by the Viterbi training algorithm, which
States in wavelet-domain HMMs are not related to classes.igl[hen extended to the case of a 2-D MHMM.

particular, there are two states at every resolution, one repregg; 4 sin
senting a wavelet coefficient being large and the other small. o s
segment images, a separate HMM is trained for each class, A
local region in an image is regarded as an instance of a random
process described by one of the HMMs. To decide the class ofl) the set of observed feature vectors for the entire image by
the local region, likelihood is computed using the HMM of each u = {u; ;i (4, 7) € N},
class, and the class yielding the maximum likelihood is selected.2) the set of states for the image by {s; ;: (i, j) € N};
The whole image is then segmented by combining decisions3) the set of classes for the imagedy: {c; ;: (¢, j) € N};
for all the local regions. It is not straightforward for such an _ . b ’
approach to account for the spatial dependence among classe® the mapping from a statg, ; to its class byC(s;, ;), and
in an image. Furthermore, the wavelet-domain HMMs alone the set of classes mapped from statéy C(s); and
do not provide a natural mechanism to incorporate segmenta5) the model estimated at iteratiprby ¢®.
tion results at multiple resolutions. A remedy, specifically conrpq gm algorithm iteratively improves the model estimation by
text-based interscale fusion, is developed in [9] to address this, following steps:
issue. In Bouman and Shapiro [7] as well as our paper, how-
ever, an entire image is regarded as an instance of a 2-D randor#) Given the current model estimagé”, the observed fea-
process characterized by one model, which reflects the transi- ture vectorsy; ;, and classes; ;, (i, j) € N, the mean
tion properties among classes/states at all the resolutions as well vectors and covariance matrices are updated by
as the dependence of feature vectors on classes/states. The set ) Lﬁ,{’)(z‘ )i
of classes or states with the maximarposterioriprobability is (p+1) _ ind B ! 5
sought according to the model. Segmenting an image by com-#m = m @)

%7

gle-resolution HMM, suppose that the states aje
.7 £ M, the class labels akg_;, and the feature vectors
u;, 5, (¢, ) € N, a generic index set. Denote

bining features at multiple resolutions is inherent in our algo-
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s (p+1)
m Tl) o
S L0 5) (s =) (i Y Ny
- @ S ;
EL w (4 ) !
L(p)(L j) is thea posteriori probability of block (¢, j) T w1 L
being in staten, calculated by e 3 B Taes
- 1
L%) (i,9) = Z I(m=s,;)- EI(C(S) =¢ Fig. 6. Blocks on the diagonals of an image.
X H ‘(9{))13757_7 1584, 5 }
(¢,7)CN
x T 2 (uis|p®.52) @
(,5)CN State
Sequences| 1 5

wherel(-) is the indicator function and is a normaliza-
tion constant.

2) The transition probabilities are updated by

S HP (i, 5)

agi,ti)l ol = . (5)
p .
IZ::L zZJ: Hm " l( ) position
() . L. . 2-D Viterbi state transition
an ", (4, 7) is thea posterioriprobability of block(z, ;)

bemg instaté, (i —1, j) in statem, and(¢, j —1) instate Fig. 7. The variable-state Viterbi algorithm.
n, which is calculated by

g ZI . sl ) and¢® are omitted fromP(s|u, ¢, ) in the sequel. By de-
m, nl TSl TS, 1 0 S fault, s, is computed on the basis of the current model estimate
1 #®P. It is shown [25] that
X JI(C(S):C) max; ' P(slu, ¢) = max, C(s)—c P(s|u).
X H agf_)zl e Thereforec is omitted from the condition by assuming tisg,
G eN e is searched amongsatisfyingC(s) = ¢, i.e.,C(s; ;) = ci.;
for all (¢, j) € N. Note that the maximization aP(s|u) is
» »w ’
X H ( ‘“ R j) ®) equivalent to maximizing(s, u). P(s, u) can be expanded
%, j)CN ..
¢ P{si,j, wij: (4, §) € N}
S o
whereq/ is a normalization constant. = P{s; j: (i, ) € N}
The computation oL.,, (¢, j) andH,, . (¢, j) is prohibitive x P{u; ;: (i, j) € N|s; j: (4, j) € N}

even with the extension of the forward and backward proba-
bilities [39] to only two dimensions. To simplify the calcula- 4
tion of L,,, (4, j) andH,,, . (i, j), it is assumed that the single (i, 5)EN
most likely state sequence accounts for virtually all the likeli-  — P(To) x P(T|To) x P(12|Th)
hood of the observations (MAP rule), which entails the Viterbi X o X P(Tytz—2|Tiwtz3) H P(u; jlsi ;) (7)
training algorithm. We thus aim at finding the optimal state se- (3,5)EN
quence to maximiz&(s|u, ¢, ¢?)), which is accomplished by whereT;; denotes the sequence of states for blocks lying on
the Viterbi algorithm. Assume diagonald, {s4 o, s¢—1.1, X, So. 4}, @s is shown in Fig. 6.
Sincely serves as an “isolating” element in the expansion
of P{s; ;: (i, j) € N}, the Viterbi algorithm can be applied
ThenL,, (i, j) andH,, . :(i, j) are trivially approximated by straightforwardly to find the combination of states maximizing
the likelihood P{s; ;, v; ;: (¢, ) € N}. What differs here
Ly(i, 5) =1 (m = Sopt, (i,j)) from the normal Viterbi algorithm is that the number of possible
Hunon,i(i, §) =1 (m = Sope, (i—1, ) sequences of states at every position in the Viterbi transition
diagram increases exponentially with the increase in number of
blocks inTy. If there areM states, the amount of computation
The key step in training is converted to searchspg by the and memory are both of ordéd”, wherer is the number of
MAP rule. To simplify expressions, the conditional variabtes states inZ;. Fig. 7 shows an example. Hence, this version of

=P{sij: (i, ) eN}x [[  Pluijlsi,s)

Sopt = max; ' P(slu, ¢, $@).

= Sopt, (i, j—1)s L = Sopt, (i, )) -
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the Viterbi algorithm is referred to as a variable-state Viteri8ince g|vens§ )l the child blocks at Resolution 2 are governed

algorithm. by a smgle resolution 2-D HMM with transition probabilities
Next, we extend the Viterbi training algorithm to multiresox,,, ,, 1(32 ,), the variable-state Viterbi algorithm [25] can be
lution models. Denote applied directly. In order to make clear th?é%) depends oaf‘)l,

we often ertes?}(sg)l) The next step is to maximize

s = {s{"): (4, j) e N}

u") = {“(7 (¢, 4) € N(7)} logP{sil)l, uil)l (k, 1) e N(l)}
and
(2) (1) (2) L
W) . + 3 log P{SEs), ul (i, §)eD(k, 1) ‘s“
" = {cm. (i, j) € N( )}. (. Do { ¥ }

If the superscriptr) is omitted, for examples, it denotes the log P
collection ofs(") over allr € R. =>_ |log ( T—l)
The Viterbi training algorithm searches for

. (L) | (D
Sope = max; v ,\_ P(8u). + Z <10gP (“k 1|5k z)
o Clo)=e (e, 0 Ak, Dmr

As mentioned previously, the set of original classes is= (2) ) @ ,. .
{1, 2, ..., G}. The “mixed” class is denoted k§ + 1. At the +log Py s (Sk l) w5 (1, 7) €Dk, 1)
finest resolutionk, cgﬁ) € G is given by the training data. At

1
s;z})

a coarser resolution < R, cf’J) is determined by the recursive ®
formula Equation (8) follows from (7). As in (7)) denotes the se-
1) o quence of states for blocks on diagomah Resolution 1. We
NONDRZ ¢, = gforall(k, 1) € D4, j) can applythe variable state Viterbi algorithm again to search for
7 G+1, otherwise. the opt|mals smceT ) still serves as an “isolating” element

in the expansmn The only difference with the maximization of
Equivalent to the above recursiat;) = g, g € G if all the de- (7) IS the extra term
1
50

scending blocks ofz, j) at the flnest resolutio® are of class 5@ (@ (2) o

g. OtherW|se if different classes occuf ) = G +1.By as- log P{ ' (Sk l) H(¢ 7) €Dk, 1)

S|gn|ngc ) in such a way, consistency on the mapping frofyhich is already computed and stored as part of the first step.

states to Classes at multiple resolutions is enforced in that ifprovided with thes,,;, parameters are estimated by equations
(1) = g, g € G, the probability thaC(si’ D) # g forany similar to (2), (3), and (5). For notational simplicity, the super-
(k 1) € D(s, 5), is assigned. . _ scripts(p) and(p+ 1) denoting iterations are replaced by to
~To glarn‘y matters, we presenta case with two resolutions. Bjénote the resolution. At each resolutign- € R, the parame-
induction, the algorithm extends to models with more than twesrs are updated as shown in (9)—(11) at the top of the following

According to the MAP rule, the optimal set of states maximizgsage, wherdi’, j') is the parent block ofi, ;) at resolution

the joint log-likelihood of all the feature vectors and states  — 1. For quadtree split! = |i/2], 5 = [4/2].

In the model-testing process, that is, applying a 2-D MHMM

log P {si’z, “Sz re{l, 2}, (k1) e N(”)} to classify an image, the MAP states,; is searched first. Be-
W@, . cause the training algorithm guarantees the consistency on class
= log P {Sk p s (ks 1) € N )} mapping across resolutions, to derive classes%%?rom states, we
] (@) (@), 1 only need to map the states at the finest resolutipi, (¢, j) €
+log P {SZ 5o Uiy (6 9) €N o (ks 1) € N } N into corresponding classes. The algorithm used to search
=log P {321)” ugl)l (k1) € N(l)} 8,p¢ iN training can be applied directly to testing. The only dif-
ference is that the constraiGt s.,:) = ¢ is removed since is
+ > 108‘P{3§,,2J)7 ut): (i, §) € D(k, 1) st } to be determined.
(k, HCND

V. FAST ALGORITHMS

The algorithm works backward to maximize the above log- As states across resolutions are statistically dependent, to de-
likelihood. First, for eacb&)l and each{k, 1) € N y gep ’

termine the optimal states according to the MAP rule, joint con-
sideration of all resolutions is necessary. However, the hierar-

{35,2])* (¢, 7) € Dk, D)} chical structure of the multiresolution model is naturally suited

to progressive classification if we relax the MAP rule. Subop-

is searched to maximize timal fast algorithms are developed by discarding joint consider-
ations and searching for states in a layered fashion. States in the

log P{sZ T J) (¢, §) € D(k, l)|3(1) lowest resolution are determined only by feature vectors in this
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I (m = 3573) Ui, 5
. i,3): (4, 5)ENE)
Ng;) _ &9 G e : 9)
I (m = 357J)>

(,3): (3,5)ENM

Eg:l) _ (i,5): (4, 5)CND (10)
I (m = sE’E)
(4,5): (3, 5)CN
I (m =", = 357’])»_1, l= 3571)) T (k = 35,7;}))
) _(69): (i, )EN®D ’ ’ ’ ’
arn,n,l( )_ M (11)

T r r r—1
=L1(z,5): (2,1 T

resolution. A classifier searches for the state of a child blo€k(k, ), we form a neighborhood df, j), B(z, j), which con-

in the higher resolution only if the class of its parent block i®minsD(k, [) as a subset. We then search for the combination

“mixed.” of states inB(i, j) that maximizes tha posterioriprobability

As one block at a lower resolution covers a larger region in tiydven features in this neighborhood according to the model at

original image, making decisions at the lower resolution reducBgsolution 2. Since the classes of some blocks in the neighbor-
computation. On the other hand, the existence of the “mixetibod may have been determined by the states of their parent
class warns the classifier of ambiguous areas that need exanhdcks, the possible states of those blocks are constrained to
nation at higher resolutions. As a result, the degradation of cld® mapped into the classes already known. The limited choices
sification due to the low resolution is avoided to a certain exterdf these states, in turn, affect the selection of states for blocks

Two fast algorithms are proposed. whose classes are to be decided.
There are many possibilities to choose the neighborhood. In
A. Fast Algorithm 1 our experiments, particularly, the neighborhood4dsat grid of
Use the two-resolution case in the previous section as an Bi2cks. For simplicity, the neighborhood of a block is not neces-
ample. To maximize sarily centered around the block. Blocks in the entire image are
] ) predivided into4 x 4 groups. The neighborhood of each block
log P {32’7)1, u;’fl: refl, 2}, (k)€ N(”)} is the group to which the block belongs.

the first step of Fast Algorithm 1 searches {cail)l (k, 1) €

o VI. COMPARISON OFCOMPLEXITY WITH 2-D HMM
N@1 that maximizes

To show that the multiresolution HMM saves computation by
log P{Sgcl,)lv “él)z (k, 1) e N}, comparison with the single-resolution HMM, we analyze quan-
itatively the order of computational complexity for both cases.
@ o ssume that the Viterbi algorithm without path constraints is
step searches fdis; : (¢, j) € D(k, I)} that maximizes used to search for the MAP states so that we have a common

) 2 @, - (1) ground for comparison.
log PAs; 5, wij: (6 5) € DLk, Dlsi o} For the single-resolution HMM, recall that the Viterbi algo-
Although the algorithm is “greedy” in the sense that it search@ighm is used to maximize the joint log-likelihood of all the

for the optimal states at each resolution, it does not give tBgtes and features in an image according to (7)
qvgrall optimal solution generally since the resolutions are St%g P{si ;o i (i, 5) €N}
tistically dependent.

= log P(T5)+log P(uo o|Zo) + - - -
B. Fast Algorithm 2 wiz—2

The second fast algorithm trains a sequence of single-reso- D (g PTAT—)+ > Pluijlsiy)

lution HMMs, each of which is estimated using features and =t G, )z Al D=7

classes in a particular resolution. Except for the finest resolWhereT_T tlﬁ the seguenfce of stateslfor bIo_ck;shor_\ dlagmm; hd.
tion, there is a “mixed” class. To classify an image, the first st , Or# 1S the NUMDEr 6T rows, or columns in the€ Image. -or Sim-

is the same as that of Fast Algorithm 1: searc Pl (k, 1) e di:ltryaylris(sFuime?;hcag;rgsz A i‘ég%n:g;g g:ee ngg;:jag\s,g'ron
N1 that maximizes 9 g. p q y

transition step corresponds to one diagonarlherefore, there

log P{s;ﬂ, uél)l (k, 1) e N, are in total2w — 1 transition steps in the Viterbi algorithm. De-

In the second step, context information obtained from the ﬁrgpte the number of blocks on diagonaby ()
resolution is used, but differently from Fast Algorithm 1. Sup- (r) = T+1, 0<7<w-—-1
pose?,(f’)l is mapped into class “mixed,” to decid%, (i, 7) € = Qw — 7 — 1, w< 1< 2w—2.

For any§§€1)l, if it is mapped into the “mixed” class, the secon
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The number of nodes at stefis M ™(™), wherel/ is the number 7/7/
of states. 7

For each node at stepa node in the preceding step is chosen
so that the path passing through the node yields the maximum
likelihood up to step-. Suppose the amount of computation for
calculating accumulated cost from one node in stepl to one
node in stepr is v(7). Sincev(7) increases linearly with the
number of blocks on diagonal we write

a8, - 4i
(1) = ern(7) + ca. Fig. 8. DCT coefficients of & x 4 image block

The computation at stepis thusi (7 M7=V~ (7). The total

computation for the Viterbi algorithm is significantly by changing parameters, including and N,
N9 computational time will be compared based on experiments in
Z M™M=y (1) the next section. o _
bt The comparison of complexity discussed above is for the
2w+1 M2w+L testing process. In training, because more parameters need be
= (2w - 1Da + 202)M2 1 2¢1 (M2 —1)? estimated for the multiresolution model, a larger set of training
M M data is required. As a result, the relative complexity of the mul-
—(2c2 — cl)M2 7 + 2¢; =172 — oM. tiresolution model in training is higher than in testing. In fact,

. o if the number of states for each class is fixed across resolutions,
If M is sufficiently large so that/* — 1 ~ M? and(1/M) ~ 0, ith every increased resolution, the number of transition prob-
we simplify the above to abilities at the previous coarsest resolution increases by a fixed
Zw2 () 1 gr(r—1) factor. Furthermore, Gaussian distributions and transition prob-
Z M™ M V(1) abilities at the new coarsest resolution add parameters to be esti-

=0 1 w3 mated. Therefore, the total number of parameters increases lin-
~ (2w = Der + 2¢9)M —2aM — M. early with resolutions at a very high rate. Practically, however,
The computation is thus of ord€r(wM?*~1). in our applications the number of states at a resolution usually

For the multiresolution model, considering the two-resolutiotleclines when the resolution becomes coarser since images tend
case, in the first step the Viterbi algorithm is applied to subinte be more homogeneous at coarser resolutions. In addition, the
agesD(k, I) to search for{§§?}: (i, j) € D(k, 1)} that maxi- intrascale dependence assumed in the 2-D MHMM allows ade-
mize guate amount of context information to be used without driving
the number of resolutions very high.
log P{s{*), u*): (i, 5) € D(k, D)|si) - Y9

! i N VII. EXPERIMENTS
For a fixed(k, 1) € N and a fixed state!"), sinceD(k, 1) _ _ .
is of size2 x 2, the amount of compuiation needed for We applied our algorithm to the segmentation of man-made
{5523; (i, j) € D(k, )} is of orderO(M3), whereM, is the and natural regions of aerial images. The images&2e< 512
number of states at Resolution 2. The total computation for tHEY-scale images with 8 bits per pixel (bpp). They are aerial im-
first step is then of ordeM$ - (w/2)? - My, wherel is the a9€s of the San Francisco Bay area provided by TRW (formerly
number of states at Resolution 1. Since in the second step ek Inc.) [30], [31]. An example of an image and its hand-la-
Viterbi algorithm is applied to an image of sige /2) x (w/2), beled classified companion are shown in Fig. 9(a) gnd (b).
the computation for the second step is of oriey2) "~ Feature vectors were extracted at t.hree resolutions. Images
If w is sufficiently large andVZ; and M, are about the same at the two low resolutions were obtained by the Daubechies

as M, the total computation for the multiresolution model i¢ [12] wavelet transform. The images at Resolution 1 and 2
of order O(wM®“~1). Therefore, the multiresolution model2'€: respectively, the LL bands of the two-level and one-level
reduces the amount of computation by ordé. wavelet transforms. At each resolution, the image was divided
Since computational order increases exponentially witR{04 x 4 blocks, and DCT coefficients or averages over some
w, the cardinality of the side of an image, we usually divigaf them were used as features. There are six such features. De-

the image into subimages with side size and classify note the DCT coefficients for & x 4 block by {D;, ;: 4, j €

the subimages separately. The computational order for tHe 1, 2, 3)}, shown by Fig. 8. The six features are defined as

single-resolution HMM is reduced t@((;2)*wo M ~1), 1) fi = Do.o; f2 = |Dvol; f3 = |Do.1l;

which isO(w? M2 1) if wy, is fixed. For the multiresolution  2) 7, = y°% | S, \D;.51/4; 7

HMM, the computational order of the second step becomes3) fs = Zi Zé \D; ;1/4;

()22 pMvo=, which does not dominate the computation 4 fo— E?»,:O E:Q |D47{|/4

in the first step ifwg — 1 < 4. Hence the total computational 6 = Lui=2 Luj=2 14517

order isO(w? Mmax {wo—1, 4}y, DCT coefficients at various frequencies reflect variation pat-
In practice, the path-constrained Viterbi algorithm [25}ternsinablock. They are more efficient than space-domain pixel

which preselectsV nodes at each step for candidate paths, iistensities for distinguishing classes. Alternative features based

applied to further reduce complexity. Since complexity variemn frequency properties include wavelet coefficients.
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(©) (d)
Fig. 9. A sample aerial image. (a) Original. (b) Hand-labeled classes. (c) Single-resolution HMM. (d) Three-level MHMM. White: man-made, @hy: natu

In addition to the intrablock features computed from pixels A 2-D MHMM tested is described by Table | (top), which
within a block, the spatial derivatives of the average intensitigts the number of states assigned for each class at each
values of blocks were used as interblock features. In particulegsolution. With the MHMM, the average classification error
the spatial derivative refers to the difference between the averagte computed at the finest resolution is 16.02%. To compare
intensity of a block and that of the block’s upper neighbor arith well-known algorithms, we also used CART6], a
left neighbor. The motivation for using interblock features idecision tree algorithm, and LVQ1, version 1 of Kohonen’s
similar to that for delta and acceleration coefficients in speetdarning vector quantization algorithm [21], to segment the
recognition [39], [25]. aerial images. Classification based on a single-resolution HMM

The MHMM algorithm and its two fast versions were testedith five states for the natural class and nine states for the
by sixfold cross-validation [36], [6]. For each iteration, onenan-made class was also performed. All these algorithms
image was used as test data and the other five as trainimgre applied to feature vectors formed at the finest resolution
data. Performance is evaluated by averaging over all iteratioms.the same way as those used for the 2-D MHMM. Both
Under a given computational complexity constraint, the numbtite average classification error rates and the error rates for
of states in each class can be chosen according to the princgdeh testing image in the sixfold cross-validation are listed
of Minimum Description Length [2]. The automatic selectiorin Table II. It is shown that the MHMM algorithm achieves
of those parameters has not been explored deeply in our curdeater error rates for all the testing images than the HMM
algorithm. Experiments, which will be described, show thalgorithm, CART, and LVQ1. On average, CART and LVQ1
with a fairly small number of states, the MHMM algorithmperform about equally well. In [34], the Bayes VQ algorithm
outperforms the single-resolution HMM algorithm and othewas used to segment the aerial images. BVQ achieves an
algorithms. error rate of about 21.5%, nearly the same as that of CART.
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TABLE |
THE NUMBER OF STATES FOREACH CLASS AT EACH RESOLUTION
Class res 1 | res 2 | res 3

natural 5 5 5

man-made 5 5 9

mixed 4 2 0

Class Tes 1 [ res 2 | res 3 Class res 1 | res 2 | res 3
natural 1 1 5 natural 2 2 5
man-made 1 1 9 man-made 2 2 9
mixed 1 1 0 mixed 2 2 0
The HMM algorithm improves CART and LVQ1 by roughly TABLE I

13%. The MHMM algorithm further improves the HMM by
15%.
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CLASSIFICATION ERROR RATES AT THE FINEST RESOLUTION BY
DIFFERENT ALGORITHMS

The segmentation results for an example image are showr| Iteration | CART | LVvQ1 | HMM | MHMM | Fast 1 | Fast 2
Fig. 9(c) and (d). We see that the classified image based on 1 0.2263 | 0.2161 | 0.1904 | 0.1733 | 0.1886 | 0.1855
MHMM is both visually cleaner and closer to the hand-labele 2 0.1803 | 0.1918 | 0.1765 | 0.1636 | 0.1566 | 0.1392
classes in terms of classification error rates. The classificati|__3 0.2899 | 0.2846 | 0.2034 | 0.1782 | 0.2914 | 0.2857
error rate achieved by the MHMM for this image is 11.57% 4 0.2529 | 0.2492 | 0.2405 | 0.2051 | 0.2430 | 0.2277

. . ) 5 0.1425 | 0.1868 | 0.1834 | 0.1255 | 0.1906 | 0.1541
wherr—._\as the error r_ate for a smgle—resolutlo_n HMM_|s 13.39¢% 5 02029 10,1813 T0.1330 1 01157 1 0.1816 1 0.1766
As is mentioned in Section I, some multiresolution model 4 e 102155 1 0.2183 | 0.1880 | 0.1602 | 0.2086 | 0.1948

consider only interscale statistical dependence. To test whetiici
the intrascale dependence assumed in the 2-D MHMM is redun-
dant given the interscale dependence, a 2-D MHMM discardif@r this 2-D MHMM, when features at the coarse resolutions
the intrascale dependence was evaluated by sixfold cross-validiee used, the error rate is reduced to 17.63%.
tion. With this new model, given the state of a block, the statesAlthough a more advanced MSRF, namely, the pyramid graph
of its child blocks are independent. The number of states amedel, is also explored in [7] for segmentation, comparison is
signed to each class at each resolution in the new 2-D MHM#gbnstrained to the quadtree model because equivalence cannot
as well as all the other parameters controlling the computatioma established between the pyramid graph model and a 2-D
complexity of the algorithm are the same as those used for thi¢iMM. The former assumes that the state of a block depends
previous MHMM. The average error rate achieved by the nesn the states of blocks in a neighborhood at the next coarser
model is 17.26%, whereas the average error rate with the pseale, while the latter assumes dependence on the parent block
vious model is 16.02%. The experiment thus has demonstrated! the sibling blocks at the same scale.
that the intrascale dependence makes improvement on classifiExperiments were performed on a Pentium Pro 230-MHz PC
cation in addition to the interscale dependence. with a LINUX operating system. For both the single-resolution
To compare with existing multiresolution models, considédiMM and the MHMM, computational complexity depends on
the quadtree MSRF developed by Bouman and Shapiro [#any parameters including the number of states in a model and
The quadtree model assumes that, at the finest resolutiparameters that control the extent of approximation taken by
the probability density function of every class is a Gaussidhe path-constrained Viterbi algorithm. Instead of comparing
mixture, which is equivalent to an HMM with several states inomputational time directly, we compare classification perfor-
one class each corresponding to a component of the mixtanance given roughly equal computational time. The average
[39]. At all the coarse resolutions, since features do not exiSPU time to classify 12 x 512 aerial image with the HMM
and only the prior probabilities of classes are considered, eat#scribed previously is 200 s. With a 2-D MHMM described in
class can be viewed as one state. Consequently, we examinable | (bottom right) and somewhat arbitrarily chosen parame-
a 2-D MHMM with parameters shown in Table | (bottom left)ters required by the path-constrained Viterbi algorithm, the av-
As the quadtree model ignores intrascale dependence, the 2rBge user CPU time to classify one image is 192 s, slightly less
MHMM was trained with the intrascale dependence dismissatian that with the HMM. The average classification error rate is
Such a 2-D MHMM has the same underlying state proce$3.32%, 8% lower than the error rate achieved with the HMM.
as the quadtree model. Since the MSRF assumes featlBgausing the more sophisticated model given by Table | (top)
observed only at the finest resolution, when applying the 2-8hd more computation, the error rate can be improved further to
MHMM to classification, we blocked the effect of features at6.02%. With the HMM, however, applying more sophisticated
the two coarse resolutions and only used the prior probabilitiseddels and more computation does not yield considerable im-
of classes for computing the joiret posteriori probability of provement in performance.
states. The classification error rate obtained by cross-validationThe average user CPU time to classify one aerial image
is 18.89%, higher than the error rate obtained with the HMNs 0.2 s for Fast Algorithm 1 and 7.3 s for Fast Algorithm 2,



LI etal: MULTIRESOLUTION IMAGE CLASSIFICATION BY HIERARCHIAL MODELING WITH TWO-DIMENSIONAL HIDDEN MARKOV 1837

much faster than the previous algorithms based on HMMse truncated below and with heavy upper tails. Most plots re-
and MHMMs. The computation time of Fast Algorithm 1 issemble the fourth to sixth plots in Fig. 10(a), which are slightly
very close to that of CART, which is 0.16 s on average. In atiurved. Fig. 10(b) shows plots for the average of all the com-
cases, the classification time provided here does not inclugenents (the first plot) and projections onto random directions.
the common feature computation time, which is a few second¥e see that the average and the projections onto the random
In the case of Fast Algorithm 1, the feature computation is tllirections fit better with the normal distribution than do the in-

primary computational cost. dividual components. These are due to a “central limit effect”
and are shown consistently by the other states. Fig. 11 presents
VIIl. TESTING MODELS the normal probability plots for differences between some pairs

of components. Differences between components also tend to

Although good results are achieved by algorithms based gihormality better than the individual components for all the
the HMMs and MHMMs, which intuitively justify the models, giates. A typical “good” fit is shown by the third and the sev-
in this section we examine the validity of the models for imageg, i, plots, which are aligned with the ideal straight line over
more formglly by testing tr_leir goodness of_fit. The main reasQ\road range. A typical “bad” fit is shown by the second and
for proposing the models is to balance their accuracy and cogih plots, which only deviate slightly from the straight line.

putational complexity; that they are absolutely correct is not rgy ¢ here, “bad” means heavy lower tails and truncated upper
ally an issue. The purpose of testing is thus more for gainifgq

insight into how improvements can be made rather than for ar-
guing the literal truthfulness of the models. B. Test of the Markovian Assumption

For 2-D HMMs, it is assumed that given the states of the
two neighboring blocks (right to the left and above), the state
A 2-D HMM assumes that given its state, a feature vector ¢ a block is conditionally independent of the other blocks in
Gaussian-distributed. The parameters of the Gaussian distrithe “past.” In particular, “past” means all the blocks above and
tion depend on the state. In order to test the normality of featuegthe left. In this section, we test three cases of conditional
vectors in a particular state, the states of the entire data setiatzpendence given the states of bléak n) and(m—1, n+
searched according to the MAP (maximwarposterior) rule 1): the independence of
using an estimated model. Feature vectors in each state are then
collected as data to verify the assumption of normality. The test {(m—1,n), (m, n+1)}
was performed on the aerial image data set described in Sec- {(m, n—1), (m, n+1)}
tion VII. The model used is a single-resolution hidden Markov ’ A
model with five states for the natural class and nine states fJid
the man-made class. {m,n+1),(m—2,n+1)}
The test of normality is based on the well-known fact that
a multivariate normal distribution with covariance proportiondfor notational simplicity, we refer to the three cases as Cases 1,
to the identity is uniform in direction. No matter the covari2, and 3, which are shown in Fig. 12.
ance, its projection onto any direction has a normal distribution.For 2-D MHMMs, two assumptions are tested. One is the
For a general Gaussian distribution, a translation followed byMarkovian assumption that given the state of a block at reso-
linear transform can generate a random vector with unit sphértion r, the state of its parent block at resolution- 1 and
ical normal distribution, perhaps in dimension lower than th#te states of its child blocks at resolutiont 1 are indepen-
of the original data. This process is usually referred to as decdent. A special case investigated is the conditional independence
relation, or whitening. of block (40, jo) € N1 and one of its grandchild blocks
For each state of the model, the normality of feature vectofs, jo), o = 4io, jo = 4jo, (42, j2) € NV, Fig. 13(a)
was tested. The data were decorrelated and then projected afimws the conditioned and tested blocks. The other assumption
a variety of directions. The normal probability plot [4] for everytested is that given the states of parent blocks at resolutithe
projection was drawn. If a random variable follows the normatates of nonsibling blocks at resolutieA- 1 are independent.
distribution, the plot should be roughly a straight line throughn particular, a worst possible case is discussed, that is, given the
the origin with unit slope. The projection directions include instates of two adjacent blocks at resolutigrthe states of their
dividual components of the vector, the average of all the corwo adjacent child blocks are independent. The spatial relation
ponents, differences between all pairs of components, and segéthose blocks is shown in Fig. 13(b).
random directions. Since the feature vectors are eight-dimenAs with the test of normality in the previous section, the test of
sional, 44 directions were tested in all. Limitations of space primdependence was performed on the aerial image data set. States
clude showing all the plots here. Therefore, details are shown feere searched by the MAP rule. Then, the test was performed
one state which is representative of the others. on those states. In the case of the HMM, the same model for the
Fig. 10(a) is the normal probability plots for each of the eigtiest of normality was used. For the MHMM, the three-resolution
components. Counted row-wise, the seventh and eighth plotsnndel described by Table | (bottom right) was used.
Fig. 10(a) show typical “bad” fit to the normal distribution for To test the conditional independence, for each fixed pair of
projections onto individual components, whereas the first plotéenditional states, a permutatigrd test [23], [8] was applied.
a typical “good” fit. “Bad” plots are characterized by data thathe idea of a permutation test dates back to Fisher’s exact test

A. Test of Normality
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-2

(b)

Fig. 10. Normal probability plots for one state. (a) Each component. (b) The average of all the components and projections onto random directions.

[15] of independence in 2 x 2 contingency table [4]. In prin- contingency table is the number of occurrencegfor— 1, )
ciple, Fisher's exact test can be generalized to testing indeing in statel and (m, n 4+ 1) being in statej. Denote the
pendence of an x ¢ contingency table. The difficulty is with marginal counts by
computational complexity, which seriously constrains the use
of exact tests. Mehta and Patel [27] have taken a network ap- M M M M
proach to achieve computational feasibility. Boyett [8] proposedr; = Z g, €= Z o j, and n= Z Z Qi j
subsampling random permutations to reduce computation. The  j=1 i=1
random permutation approach is taken here for simplicity.

Suppose the test for independence is for blgek— 1, n) WhereM is the total number of states. For eaeh;, generate
and(m, n + 1) (Case 1 of the HMM). The entry; ; in the «; ; indices(;). A list is generated by assembling indic(ejé,

i=1 j=1
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-2t -2 -2

-4 : -4 ' -4
’s o 5 -5 0 5 -5

Fig. 11. Normal probability plots for one state: differences between pairs of components.
a list as follows is generated:
<1 11 2 2 2 2 2)
11211122/
Fixing the first row and permuting the second row might yield
a list

1 11 2 2 2 2 2
Fig. 12. Tests of conditional independence for the HMM. The states of gray < ) .
blocks are conditional states; the states of white blocks are states upon which 12212111
tests for independence were performed. .
The permutation yields new counts for the number( gf in
the list, denoted a&; ;. Note that the marginal counts remain

o unaltered; that is,

=
z

j=1 i=1

For the particular case of the above list, the new contingency
table is

...... v ()

4 1

For both the original contingency table and those generated
@ () by random permutations, we compute Pearsq#’statistic [4]
Fig. 13. Tests of the MHMM assumptions. (a) Markovian property across

resolutions. (b) Conditional independence of child blocks descended from ) MM (i — ic;/n)?

different parent blocks. The states of gray blocks are conditional states; the X" =n Z Z ~ gt (12)
states of dotted blocks are states upon which tests for independence were =1 =1 T3 Cy

performed.

The quantityc;_; is replaced by, ; for tables generated by
in a certain order. A permutation is obtained by randomly petp_ermutations. Denote the' statistic of the original contingency
muting the second numbgnwhile fixing the order of the first table asx;,,. Thep-value for the original contingency table is

number:. For an exampl@ x 2 contingency table _ number of contingency tables for whight > x2,.

<2 1 ) P number of permutations 1

3 2 The number of permutations used was 1000.
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Since conditional independence is of concerwalues were prove a 2-D HMM, future work should include the left upper
computed for each condition. The HMM in discussion has raeighbor in the conditioned states of transition probabilities.
total of 14 states, which yiel#l4 x 14 conditions, each corre-
sponding to a pair of states for neighboring blocks above and to
the left. We thus have 196-values for each case of the inde-
pendence tests shown in Fig. 12. For Cases 1, 2, and 3, the méFhe authors acknowledge the helpful suggestions of the re-
dians of thep-values ard).055, 0.462, and0.443, respectively. viewers.
The percentage gf-values above 0.05 for Cases 1, 2, and 3 is
around 50%, 95%, and 90%, correspondingly. Results show that
Cases 2 and 3 fitthe conditional independence assumption about
equally well, and much better than does Case 1. This coincide$l] K. Abend, T. J. Harley, and L. N. Kanal, “Classification of binary

with our intuition. We expect that the conditional independence g‘g‘tdcirgs%a“emstEE Trans. Inform. Theoryol. IT-11, pp. 538-544,
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