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Abstract—This paper treats a multiresolution hidden Markov
model for classifying images. Each image is represented by feature
vectors at several resolutions, which are statistically dependent
as modeled by the underlying state process, a multiscale Markov
mesh. Unknowns in the model are estimated by maximum likeli-
hood, in particular by employing the expectation-maximization
algorithm. An image is classified by finding the optimal set of
states with maximum a posteriori probability. States are then
mapped into classes. The multiresolution model enables multiscale
information about context to be incorporated into classification.
Suboptimal algorithms based on the model provide progressive
classification that is much faster than the algorithm based on
single-resolution hidden Markov models.

Index Terms—EM algorithm, image classification, image seg-
mentation, multiresolution hidden Markov model, tests of good-
ness of fit.

I. INTRODUCTION

RECENT years have seen substantial interest and activity
devoted to algorithms for multiresolution processing [16],

[37]. One reason for this focus on image segmentation is that
multiresolution processing seems to imitate the decision proce-
dure of the human visual system (HVS) [28]. For example, when
the HVS segments a picture shown in Fig. 1 into a foreground
region (a fox) and a background region, the foreground can be
located roughly by a brief glance, which is similar to viewing a
low-resolution image. As is shown in Fig. 1(b), the crude deci-
sion leaves only a small unsure area around the boundary. Fur-
ther careful examination of details at the boundary results in the
final decision as to what is important in the image. Both global
and local information are used by the HVS, which distributes
effort unevenly by looking at more ambiguous regions at higher
resolutions than it devotes to other regions.

Context-dependent classification algorithms based on two-di-
mensional hidden Markov models (2-D HMMs) have been de-
veloped [14], [24], [25] to overcome the overlocalization of con-
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ventional block-based classification algorithms. In this paper, a
multiresolution extension of the 2-D HMMs described in [25]
is proposed so that more global context information can be used
efficiently. A joint decision on classes for the entire image is
needed to classify optimally an image based on the 2-D HMM
[25]. In real life, however, because of computational complexity,
we have to divide an image into subimages and ignore statistical
dependence among the subimages. With the increase of model
complexity, it is necessary to decrease the size of the subim-
ages to preserve modest computational feasibility. Instead of
using smaller subimages, a classifier based on the multiresolu-
tion model retains tractability by representing context informa-
tion hierarchically.

With a 2-D multiresolution hidden Markov model (MHMM),
an image is taken to be a collection of feature vectors at several
resolutions. These feature vectors at a particular resolution are
determined only by the image at that resolution. The feature vec-
tors across all the resolutions are generated by a multiresolution
Markov source [35], [18]. As with the 2-D HMM, the source ex-
ists in a state at any block at any resolution. Given the state of a
block at each particular resolution, the feature vector is assumed
to have a Gaussian distribution so that the unconditional distri-
bution is a Gaussian mixture. The parameters of each Gaussian
distribution depend on both state and resolution. At any fixed
resolution, as with the 2-D HMM, the probability of the source
entering a particular state is governed by a second-order Markov
mesh [1]. Unlike the HMM, there are multiple Markov meshes
at one resolution whose transition probabilities depend on the
states of parent blocks.

Many other multiresolution models have been developed to
represent statistical dependence among image pixels, with wide
applications in image segmentation, denoising, restoration, etc.
The multiscale autoregressive model proposed by Basseville
et al. [3], the multiscale random field (MSRF) proposed by
Bouman and Shapiro [7], and the wavelet-domain HMM pro-
posed by Crouseet al. [11] is discussed and compared with the
2-D MHMM in Section III after necessary notation is introduced
in Section II.

As was mentioned, the human visual system is fast as well
as accurate, at least by standards of automated technologies,
whereas the 2-D MHMM and other multiresolution models [3]
do not necessarily benefit classification speed because infor-
mation is combined from several resolutions in order to make
a decision regarding a local region. However, a 2-D MHMM
provides a hierarchical structure for fast progressive classifica-
tion if the maximuma posteriori (MAP) classification rule is
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(a) (b) (c)

Fig. 1. The segmentation process of the human visual system. (a) Original image. (b) A rough segmentation with the gray region being undecided. (c) Therefined
segmentation.

Fig. 2. Multiple resolutions of an image.

relaxed. The progressive classifier is inspired by the human vi-
sual system to examine higher resolutions selectively for more
ambiguous regions.

In Section II, a mathematical formulation of the basic as-
sumptions of a 2-D multiresolution HMM is provided. Related
work on multiresolution modeling for images is discussed in
Section III. The algorithm is presented in Section IV. Fast algo-
rithms for progressive classification are presented in Section V.
Section VI provides an analysis of computational complexity.
Experiments with the algorithm are described in Section VII.
Section VIII is about hypothesis testing as it applies to deter-
mining the validity of the MHMM. Conclusions are drawn in
Section IX.

II. BASIC ASSUMPTIONS OF2-D MHMM

To classify an image, representations of the image at different
resolutions are computed first. The original image corresponds
to the highest resolution. Lower resolutions are generated by
successively filtering out high-frequency information. Wavelet

Fig. 3. The image hierarchy across resolutions.

transforms [12] naturally provide low-resolution images in the
low-frequency band (the LL band). A sequence of images at sev-
eral resolutions is shown in Fig. 2. As subsampling is applied for
every reduced resolution, the image size decreases by a factor
of two in both directions. As is shown by Fig. 2, the number
of blocks in both rows and columns is successively diminished
by half at each lower resolution. Obviously, a block at a lower
resolution covers a spatially more global region of the image.
As is indicated by Fig. 3, the block at the lower resolution is
referred to as a parent block, and the four blocks at the same
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spatial location at the higher resolution are referred to as child
blocks. We will always assume such a “quadtree” split in the se-
quel since the training and testing algorithms can be extended
easily to other hierarchical structures.

We first review the basic assumptions of the single-resolu-
tion 2-D HMM as presented in [25]. In the 2-D HMM, feature
vectors are generated by a Markov model that may change state
once every block. Suppose there arestates, the state of block

being denoted by . The feature vector of block
is , and the class is . We use to represent the prob-
ability of an event. We denote if or

, in which case we say that block is before
block . The first assumption is that

context

context

where , , and . The second
assumption is that for every state, the feature vectors follow a
Gaussian distribution. Once the state of a block is known, the
feature vector is conditionally independent of information in
other blocks. The covariance matrix and the mean vector
of the Gaussian distribution vary with state.

For the MHMM, denote the collection of resolutions by
, with being the finest resolution. Let the

collection of block indices at resolutionbe

Images are described by feature vectors at all the resolutions,
denoted by , . Every feature vector is labeled with

a class . The underlying state of a feature vector is . At

each resolution , the set of states is .
Note that as states vary across resolutions, different resolutions
do not share states.

As with the single-resolution model, each state at every res-
olution is uniquely mapped to one class. On the other hand, a
block with a known class may exist in several states. Since a
block at a lower resolution contains several blocks at a higher
resolution, it may not be of a pure class. Therefore, except for
the highest resolution, there is an extra “mixed” class in addi-
tion to the original classes. Denote the set of original classes by

and the “mixed” class by . Because
of the unique mapping between states and classes, the state of
a parent block may constrain the possible states for its child
blocks. If the state of a parent block is mapped to a determined
(nonmixed) class, the child blocks can exist only in states that
map to the same class.

To structure statistical dependence among resolutions, a
Markov chain with resolution playing a time-like role is
assumed in the 2-D MHMM. Given the states and the features
at the parent resolution, the states and the features at the current
resolution are conditionally independent of the other previous
resolutions, so that

(1)

At the coarsest resolution, , feature vectors are assumed
to be generated by a single-resolution 2-D HMM. At a higher
resolution, the conditional distribution of a feature vector given
its state is also assumed to be Gaussian. The parameters of the
Gaussian distribution depend upon the state at the particular res-
olution.

Given the states at resolution , statistical dependence
among blocks at the finer resolutionis constrained to sibling
blocks (child blocks descended from the same parent block).
Specifically, child blocks descended from different parent
blocks are conditionally independent. In addition, given the
state of a parent block, the states of its child blocks are inde-
pendent of the states of their “uncle” blocks (nonparent blocks
at the parent resolution). State transitions among sibling blocks
are governed by the same Markovian property assumed for a
single-resolution 2-D HMM. The state transition probabilities,
however, depend on the state of their parent block. To formulate
these assumptions, denote the child blocks at resolutionof
block at resolution by

According to the assumptions

where

can be evaluated by transition probabilities conditioned on
, denoted by . We thus have a different

set of transition probabilities for every possible state
in the parent resolution, and so for the “state process” the
resolutions are “minimal” in the sense of Pérez and Heitz [33,
Proposition 1]. The influence of previous resolutions is exerted
hierarchically through the probability of the states, which can
be visualized in Fig. 4. The joint probability of states and
feature vectors at all the resolutions in (1) is then derived as
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Fig. 4. The hierarchical statistical dependence across resolutions.

To summarize, a 2-D MHMM reflects both the interscale and
intrascale statistical dependence. The interscale dependence is
modeled by the Markov chain over resolutions. The intrascale
dependence is modeled by the HMM. At the coarsest resolution,
feature vectors are assumed to be generated by a 2-D HMM. At
all the higher resolutions, feature vectors of sibling blocks are
also assumed to be generated by 2-D HMMs. The HMMs vary
according to the states of parent blocks. Therefore, if the next
coarser resolution has states, then there are, correspondingly,

HMMs at the current resolution. The motivation for having
both the inter- and intrascale dependence is discussed in Section
III. Experiments in Section VII show the influence of both types
of dependence.

III. RELATED WORK

A variety of multiresolution models have been proposed for
the purpose of incorporating relatively global information into
image classification. One early work in this direction is the mul-
tiscale autoregressive model proposed by Bassevilleet al. [3].
Suppose images are represented byresolutions, with
being the coarsest resolution. Pixel intensities at resolutionare
denoted by

Define a coarse-scale shift operatorto reference theparent
node, and to reference the “ancestor” nodelevels higher.
Specifically,

A homogeneous multiscale autoregressive model has the prop-
erty that

where is an independent white driving noise.
As with autoregressive models in other contexts, this model

entails a rather constrained dependence, here across resolutions.
Recent work has generalized the cross resolution dependence
by introducing Gaussian mixture models [7] or hidden Markov
models [11]. Bouman and Shapiro proposed the multiscale
random field (MSRF) model for images. Suppose an image is
described by a random field . The pixel labels (or classes) at

resolution are , . The first assumption of
the MSRF is the Markovian property across resolutions, i.e.,

The second assumption is the exclusive dependence ofon
, that is,

For segmentation, the models are restricted to two properties
regarding , . First, the individual classes in

are conditionally independent given the classes in .
Second, each class in depends only on classes in a neigh-
borhood at the coarser resolution .

There are three key differences between our 2-D MHMMs
and the MSRF models for segmentation [7]. First, in the MSRF,
features are observed solely at the finest resolution. The coarser
resolutions figure only in prior probabilities of classes. For many
applications of image classification [37], [26], it has been found
that combining features extracted from several resolutions im-
proves classification. In Section VII, experiments also demon-
strate the gain in performance that owes to multiresolution fea-
tures. Second, states and classes are not distinguished by the
MSRF in that every class is considered as one state. At the
finest resolution, the conditional distribution of feature vectors
given a state is a Gaussian mixture. It is shown [39] that such
an HMM is equivalent to a special case of the HMM we as-
sumed, in which every class contains several states, each cor-
responding to a component of the Guassian mixture. On the
other hand, in general, an HMM with multiple states in one
class and Gaussian distributions conditioned on states cannot
be converted to an HMM with a single state in every class and a
Gaussian mixture distribution given each state. Third, the MSRF
assumes statistical dependence only across resolutions. In the
2-D MHMM, however, since sibling blocks are dependent given
the state of their parent block, interscale and intrascale depen-
dence can be balanced flexibly. With only the interscale de-
pendence, a multiresolution model implies that a parent node
completely summarizes context information for its child nodes.
However, this assumption need not be true in practice, even ap-
proximately. In fact, for many applications, information useful
for distinguishing classes is embedded in relatively high-fre-
quency bands. As a result, when the resolution is sufficiently
low, a parent node cannot provide any helpful context informa-
tion.

A 2-D MHMM provides a mechanism to trade interscale and
intrascale dependence according to applications. For example,
suppose the number of blocks at the finest resolution that a
system intends to classify jointly is . If the HMM as-
sumed for feature vectors at the coarsest resolution examines

blocks jointly, we need a three-resolution model with
quadtree split. If the HMM at the coarsest resolution examines

blocks jointly, we then need a two-resolution model with
quadtree split. Another setup of a two-resolution model might
be to replace the quadtree split by a split and assume an
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(a) (b) (c)

Fig. 5. Three possible structures of MHMMs on an8� 8 grid of blocks. (a)
a three-level MHMM with quadtree split and the coarsest resolution modeled
by an HMM on a2 � 2 grid. (b) a two-level MHMM with quadtree split and
the coarsest resolution modeled by an HMM on a4 � 4 grid. (c) a two-level
MHMM with 4� 4 split and the coarsest resolution modeled by an HMM on a
2 � 2 grid.

HMM on blocks at the coarse resolution. The three possi-
bilities of the MHMM are shown in Fig. 5. All the parameters in
the model structure setup can be chosen conveniently as inputs
to algorithms for training and testing.

Another multiresolution model based on HMMs is the model
proposed for wavelet coefficients by Crouseet al. [11], where
wavelet coefficients across resolutions are assumed to be gen-
erated by one-dimensional hidden Markov models with resolu-
tion being the time-like role in the Markov chain. If we view
wavelet coefficients as special cases of features, the model in
[11] considers features observed at multiple resolutions. How-
ever, intrascale dependence is not pursued in depth in [11]. This
wavelet-domain model is applied to image segmentation [9] and
is extended to general features in [29].

The approach of applying models to image segmentation in
[9] is different from that of Bouman and Shapiro [7] and ours.
States in wavelet-domain HMMs are not related to classes. In
particular, there are two states at every resolution, one repre-
senting a wavelet coefficient being large and the other small. To
segment images, a separate HMM is trained for each class. A
local region in an image is regarded as an instance of a random
process described by one of the HMMs. To decide the class of
the local region, likelihood is computed using the HMM of each
class, and the class yielding the maximum likelihood is selected.
The whole image is then segmented by combining decisions
for all the local regions. It is not straightforward for such an
approach to account for the spatial dependence among classes
in an image. Furthermore, the wavelet-domain HMMs alone
do not provide a natural mechanism to incorporate segmenta-
tion results at multiple resolutions. A remedy, specifically con-
text-based interscale fusion, is developed in [9] to address this
issue. In Bouman and Shapiro [7] as well as our paper, how-
ever, an entire image is regarded as an instance of a 2-D random
process characterized by one model, which reflects the transi-
tion properties among classes/states at all the resolutions as well
as the dependence of feature vectors on classes/states. The set
of classes or states with the maximuma posterioriprobability is
sought according to the model. Segmenting an image by com-
bining features at multiple resolutions is inherent in our algo-

rithm based on 2-D MHMMs. As the number of states and the
way of extracting features are allowed to vary with resolution,
it is flexible enough to incorporate multiscale information for
classification using 2-D MHMMs.

In computer vision, there has been much work on learning
vision by image modeling [20], [22], [17]. Particularly, in [17],
multiresolution modeling is applied to estimate motions from
image frames. Bayesian network techniques [5], [32], [19] have
played an important role in learning models in computer vi-
sion. Theories of Bayesian networks also provide guidance on
how to construct models with tractable learning complexity.
Exact inference on general Bayesian networks is NP-hard, as
discussed by Cooper [10]. Computationally efficient algorithms
for training a general Bayesian network are not always avail-
able. As we have constructed 2-D MHMMs by extending 1-D
HMMs used in speech recognition [39], efficient algorithms for
training and applying 2-D MHMMs are derived from the ex-
pectation-maximalization (EM) algorithm [13] and related tech-
niques developed for speech recognition.

IV. THE ALGORITHM

The parameters of the multiresolution model are estimated it-
eratively by the EM algorithm [13]. To ease the enormous com-
putational burden, we apply a suboptimal estimation procedure:
the Viterbi training algorithm [39]. At every iteration, the com-
bination of states at all the resolutions with the maximuma pos-
teriori (MAP) probability is searched by the Viterbi algorithm
[38]. These states are then assumed to be real states to update the
estimation of parameters. Because of the multiple resolutions, a
certain part of the training algorithm used for the single-resolu-
tion HMM [25] is changed to a recursive procedure. For com-
pleteness, we present the EM algorithm for estimating the pa-
rameters of a 2-D HMM as described in [25]. Next, the EM esti-
mation is approximated by the Viterbi training algorithm, which
is then extended to the case of a 2-D MHMM.

For a single-resolution HMM, suppose that the states are,
, the class labels are , and the feature vectors

are , , a generic index set. Denote

1) the set of observed feature vectors for the entire image by
;

2) the set of states for the image by ;

3) the set of classes for the image by ;

4) the mapping from a state to its class by , and
the set of classes mapped from statesby ; and

5) the model estimated at iterationby .

The EM algorithm iteratively improves the model estimation by
the following steps:

1) Given the current model estimate , the observed fea-
ture vectors , and classes , , the mean
vectors and covariance matrices are updated by

(2)
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(3)

is thea posterioriprobability of block
being in state , calculated by

(4)

where is the indicator function and is a normaliza-
tion constant.

2) The transition probabilities are updated by

(5)

is thea posterioriprobability of block
being in state, in state , and in state

, which is calculated by

(6)

where is a normalization constant.

The computation of and is prohibitive
even with the extension of the forward and backward proba-
bilities [39] to only two dimensions. To simplify the calcula-
tion of and , it is assumed that the single
most likely state sequence accounts for virtually all the likeli-
hood of the observations (MAP rule), which entails the Viterbi
training algorithm. We thus aim at finding the optimal state se-
quence to maximize , which is accomplished by
the Viterbi algorithm. Assume

Then and are trivially approximated by

The key step in training is converted to searching by the
MAP rule. To simplify expressions, the conditional variables

Fig. 6. Blocks on the diagonals of an image.

Fig. 7. The variable-state Viterbi algorithm.

and are omitted from in the sequel. By de-
fault, is computed on the basis of the current model estimate

. It is shown [25] that

Therefore, is omitted from the condition by assuming that
is searched amongsatisfying , i.e.,
for all . Note that the maximization of is
equivalent to maximizing . can be expanded

(7)

where denotes the sequence of states for blocks lying on
diagonal , , as is shown in Fig. 6.

Since serves as an “isolating” element in the expansion
of , the Viterbi algorithm can be applied
straightforwardly to find the combination of states maximizing
the likelihood . What differs here
from the normal Viterbi algorithm is that the number of possible
sequences of states at every position in the Viterbi transition
diagram increases exponentially with the increase in number of
blocks in . If there are states, the amount of computation
and memory are both of order , where is the number of
states in . Fig. 7 shows an example. Hence, this version of
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the Viterbi algorithm is referred to as a variable-state Viterbi
algorithm.

Next, we extend the Viterbi training algorithm to multireso-
lution models. Denote

and

If the superscript is omitted, for example,, it denotes the
collection of over all .

The Viterbi training algorithm searches for

As mentioned previously, the set of original classes is
. The “mixed” class is denoted by . At the

finest resolution , is given by the training data. At

a coarser resolution , is determined by the recursive
formula

for all

otherwise.

Equivalent to the above recursion, , if all the de-
scending blocks of at the finest resolution are of class
. Otherwise, if different classes occur, . By as-

signing in such a way, consistency on the mapping from
states to classes at multiple resolutions is enforced in that if

, , the probability that , for any
, is assigned .

To clarify matters, we present a case with two resolutions. By
induction, the algorithm extends to models with more than two.
According to the MAP rule, the optimal set of states maximizes
the joint log-likelihood of all the feature vectors and states

The algorithm works backward to maximize the above log-
likelihood. First, for each and each

is searched to maximize

Since given , the child blocks at Resolution 2 are governed
by a single resolution 2-D HMM with transition probabilities

, the variable-state Viterbi algorithm [25] can be

applied directly. In order to make clear that depends on ,

we often write . The next step is to maximize

(8)

Equation (8) follows from (7). As in (7), denotes the se-
quence of states for blocks on diagonalin Resolution 1. We
can apply the variable-state Viterbi algorithm again to search for
the optimal since still serves as an “isolating” element
in the expansion. The only difference with the maximization of
(7) is the extra term

which is already computed and stored as part of the first step.
Provided with the , parameters are estimated by equations

similar to (2), (3), and (5). For notational simplicity, the super-
scripts and denoting iterations are replaced by to
denote the resolution. At each resolution, , the parame-
ters are updated as shown in (9)–(11) at the top of the following
page, where is the parent block of at resolution

. For quadtree split, , .
In the model-testing process, that is, applying a 2-D MHMM

to classify an image, the MAP states is searched first. Be-
cause the training algorithm guarantees the consistency on class
mapping across resolutions, to derive classes from states, we
only need to map the states at the finest resolution,,

, into corresponding classes. The algorithm used to search
in training can be applied directly to testing. The only dif-

ference is that the constraint is removed since is
to be determined.

V. FAST ALGORITHMS

As states across resolutions are statistically dependent, to de-
termine the optimal states according to the MAP rule, joint con-
sideration of all resolutions is necessary. However, the hierar-
chical structure of the multiresolution model is naturally suited
to progressive classification if we relax the MAP rule. Subop-
timal fast algorithms are developed by discarding joint consider-
ations and searching for states in a layered fashion. States in the
lowest resolution are determined only by feature vectors in this
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(9)

(10)

(11)

resolution. A classifier searches for the state of a child block
in the higher resolution only if the class of its parent block is
“mixed.”

As one block at a lower resolution covers a larger region in the
original image, making decisions at the lower resolution reduces
computation. On the other hand, the existence of the “mixed”
class warns the classifier of ambiguous areas that need exami-
nation at higher resolutions. As a result, the degradation of clas-
sification due to the low resolution is avoided to a certain extent.
Two fast algorithms are proposed.

A. Fast Algorithm 1

Use the two-resolution case in the previous section as an ex-
ample. To maximize

the first step of Fast Algorithm 1 searches for
that maximizes

For any , if it is mapped into the “mixed” class, the second

step searches for that maximizes

Although the algorithm is “greedy” in the sense that it searches
for the optimal states at each resolution, it does not give the
overall optimal solution generally since the resolutions are sta-
tistically dependent.

B. Fast Algorithm 2

The second fast algorithm trains a sequence of single-reso-
lution HMMs, each of which is estimated using features and
classes in a particular resolution. Except for the finest resolu-
tion, there is a “mixed” class. To classify an image, the first step
is the same as that of Fast Algorithm 1: search for

that maximizes

In the second step, context information obtained from the first
resolution is used, but differently from Fast Algorithm 1. Sup-
pose is mapped into class “mixed,” to decide ,

, we form a neighborhood of , , which con-
tains as a subset. We then search for the combination
of states in that maximizes thea posterioriprobability
given features in this neighborhood according to the model at
Resolution 2. Since the classes of some blocks in the neighbor-
hood may have been determined by the states of their parent
blocks, the possible states of those blocks are constrained to
be mapped into the classes already known. The limited choices
of these states, in turn, affect the selection of states for blocks
whose classes are to be decided.

There are many possibilities to choose the neighborhood. In
our experiments, particularly, the neighborhood is a grid of
blocks. For simplicity, the neighborhood of a block is not neces-
sarily centered around the block. Blocks in the entire image are
predivided into groups. The neighborhood of each block
is the group to which the block belongs.

VI. COMPARISON OFCOMPLEXITY WITH 2-D HMM

To show that the multiresolution HMM saves computation by
comparison with the single-resolution HMM, we analyze quan-
titatively the order of computational complexity for both cases.
Assume that the Viterbi algorithm without path constraints is
used to search for the MAP states so that we have a common
ground for comparison.

For the single-resolution HMM, recall that the Viterbi algo-
rithm is used to maximize the joint log-likelihood of all the
states and features in an image according to (7)

where is the sequence of states for blocks on diagonal, and
, or is the number of rows, or columns in the image. For sim-

plicity, assume that . Every node in the Viterbi transition
diagram (Fig. 7) corresponds to a state sequence, and every
transition step corresponds to one diagonal. Therefore, there
are in total transition steps in the Viterbi algorithm. De-
note the number of blocks on diagonalby

.
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The number of nodes at stepis , where is the number
of states.

For each node at step, a node in the preceding step is chosen
so that the path passing through the node yields the maximum
likelihood up to step . Suppose the amount of computation for
calculating accumulated cost from one node in step to one
node in step is . Since increases linearly with the
number of blocks on diagonal, we write

The computation at stepis thus . The total
computation for the Viterbi algorithm is

If is sufficiently large so that and ,
we simplify the above to

The computation is thus of order .
For the multiresolution model, considering the two-resolution

case, in the first step the Viterbi algorithm is applied to subim-
ages to search for that maxi-
mize

For a fixed and a fixed state , since
is of size , the amount of computation needed for

is of order , where is the
number of states at Resolution 2. The total computation for the
first step is then of order , where is the
number of states at Resolution 1. Since in the second step the
Viterbi algorithm is applied to an image of size ,
the computation for the second step is of order .
If is sufficiently large and and are about the same
as , the total computation for the multiresolution model is
of order . Therefore, the multiresolution model
reduces the amount of computation by order .

Since computational order increases exponentially with
, the cardinality of the side of an image, we usually divide

the image into subimages with side size and classify
the subimages separately. The computational order for the
single-resolution HMM is reduced to ,
which is if is fixed. For the multiresolution
HMM, the computational order of the second step becomes

, which does not dominate the computation
in the first step if . Hence the total computational
order is .

In practice, the path-constrained Viterbi algorithm [25],
which preselects nodes at each step for candidate paths, is
applied to further reduce complexity. Since complexity varies

Fig. 8. DCT coefficients of a4� 4 image block

significantly by changing parameters, including and ,
computational time will be compared based on experiments in
the next section.

The comparison of complexity discussed above is for the
testing process. In training, because more parameters need be
estimated for the multiresolution model, a larger set of training
data is required. As a result, the relative complexity of the mul-
tiresolution model in training is higher than in testing. In fact,
if the number of states for each class is fixed across resolutions,
with every increased resolution, the number of transition prob-
abilities at the previous coarsest resolution increases by a fixed
factor. Furthermore, Gaussian distributions and transition prob-
abilities at the new coarsest resolution add parameters to be esti-
mated. Therefore, the total number of parameters increases lin-
early with resolutions at a very high rate. Practically, however,
in our applications the number of states at a resolution usually
declines when the resolution becomes coarser since images tend
to be more homogeneous at coarser resolutions. In addition, the
intrascale dependence assumed in the 2-D MHMM allows ade-
quate amount of context information to be used without driving
the number of resolutions very high.

VII. EXPERIMENTS

We applied our algorithm to the segmentation of man-made
and natural regions of aerial images. The images are
gray-scale images with 8 bits per pixel (bpp). They are aerial im-
ages of the San Francisco Bay area provided by TRW (formerly
ESL, Inc.) [30], [31]. An example of an image and its hand-la-
beled classified companion are shown in Fig. 9(a) and (b).

Feature vectors were extracted at three resolutions. Images
at the two low resolutions were obtained by the Daubechies
4 [12] wavelet transform. The images at Resolution 1 and 2
are, respectively, the LL bands of the two-level and one-level
wavelet transforms. At each resolution, the image was divided
into blocks, and DCT coefficients or averages over some
of them were used as features. There are six such features. De-
note the DCT coefficients for a block by

, shown by Fig. 8. The six features are defined as

1) ; ; ;
2) ;
3) ;
4) .

DCT coefficients at various frequencies reflect variation pat-
terns in a block. They are more efficient than space-domain pixel
intensities for distinguishing classes. Alternative features based
on frequency properties include wavelet coefficients.
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(a) (b)

(c) (d)

Fig. 9. A sample aerial image. (a) Original. (b) Hand-labeled classes. (c) Single-resolution HMM. (d) Three-level MHMM. White: man-made, Gray: natural.

In addition to the intrablock features computed from pixels
within a block, the spatial derivatives of the average intensity
values of blocks were used as interblock features. In particular,
the spatial derivative refers to the difference between the average
intensity of a block and that of the block’s upper neighbor or
left neighbor. The motivation for using interblock features is
similar to that for delta and acceleration coefficients in speech
recognition [39], [25].

The MHMM algorithm and its two fast versions were tested
by sixfold cross-validation [36], [6]. For each iteration, one
image was used as test data and the other five as training
data. Performance is evaluated by averaging over all iterations.
Under a given computational complexity constraint, the number
of states in each class can be chosen according to the principle
of Minimum Description Length [2]. The automatic selection
of those parameters has not been explored deeply in our current
algorithm. Experiments, which will be described, show that
with a fairly small number of states, the MHMM algorithm
outperforms the single-resolution HMM algorithm and other
algorithms.

A 2-D MHMM tested is described by Table I (top), which
lists the number of states assigned for each class at each
resolution. With the MHMM, the average classification error
rate computed at the finest resolution is 16.02%. To compare
with well-known algorithms, we also used CART® [6], a
decision tree algorithm, and LVQ1, version 1 of Kohonen’s
learning vector quantization algorithm [21], to segment the
aerial images. Classification based on a single-resolution HMM
with five states for the natural class and nine states for the
man-made class was also performed. All these algorithms
were applied to feature vectors formed at the finest resolution
in the same way as those used for the 2-D MHMM. Both
the average classification error rates and the error rates for
each testing image in the sixfold cross-validation are listed
in Table II. It is shown that the MHMM algorithm achieves
lower error rates for all the testing images than the HMM
algorithm, CART, and LVQ1. On average, CART and LVQ1
perform about equally well. In [34], the Bayes VQ algorithm
was used to segment the aerial images. BVQ achieves an
error rate of about 21.5%, nearly the same as that of CART.
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TABLE I
THE NUMBER OF STATES FOREACH CLASS AT EACH RESOLUTION

The HMM algorithm improves CART and LVQ1 by roughly
13%. The MHMM algorithm further improves the HMM by
15%.

The segmentation results for an example image are shown in
Fig. 9(c) and (d). We see that the classified image based on the
MHMM is both visually cleaner and closer to the hand-labeled
classes in terms of classification error rates. The classification
error rate achieved by the MHMM for this image is 11.57%,
whereas the error rate for a single-resolution HMM is 13.39%.

As is mentioned in Section III, some multiresolution models
consider only interscale statistical dependence. To test whether
the intrascale dependence assumed in the 2-D MHMM is redun-
dant given the interscale dependence, a 2-D MHMM discarding
the intrascale dependence was evaluated by sixfold cross-valida-
tion. With this new model, given the state of a block, the states
of its child blocks are independent. The number of states as-
signed to each class at each resolution in the new 2-D MHMM
as well as all the other parameters controlling the computational
complexity of the algorithm are the same as those used for the
previous MHMM. The average error rate achieved by the new
model is 17.26%, whereas the average error rate with the pre-
vious model is 16.02%. The experiment thus has demonstrated
that the intrascale dependence makes improvement on classifi-
cation in addition to the interscale dependence.

To compare with existing multiresolution models, consider
the quadtree MSRF developed by Bouman and Shapiro [7].
The quadtree model assumes that, at the finest resolution,
the probability density function of every class is a Gaussian
mixture, which is equivalent to an HMM with several states in
one class each corresponding to a component of the mixture
[39]. At all the coarse resolutions, since features do not exist
and only the prior probabilities of classes are considered, each
class can be viewed as one state. Consequently, we examined
a 2-D MHMM with parameters shown in Table I (bottom left).
As the quadtree model ignores intrascale dependence, the 2-D
MHMM was trained with the intrascale dependence dismissed.
Such a 2-D MHMM has the same underlying state process
as the quadtree model. Since the MSRF assumes features
observed only at the finest resolution, when applying the 2-D
MHMM to classification, we blocked the effect of features at
the two coarse resolutions and only used the prior probabilities
of classes for computing the jointa posteriori probability of
states. The classification error rate obtained by cross-validation
is 18.89%, higher than the error rate obtained with the HMM.

TABLE II
CLASSIFICATION ERROR RATES AT THE FINEST RESOLUTION BY

DIFFERENTALGORITHMS

For this 2-D MHMM, when features at the coarse resolutions
are used, the error rate is reduced to 17.63%.

Although a more advanced MSRF, namely, the pyramid graph
model, is also explored in [7] for segmentation, comparison is
constrained to the quadtree model because equivalence cannot
be established between the pyramid graph model and a 2-D
MHMM. The former assumes that the state of a block depends
on the states of blocks in a neighborhood at the next coarser
scale, while the latter assumes dependence on the parent block
and the sibling blocks at the same scale.

Experiments were performed on a Pentium Pro 230-MHz PC
with a LINUX operating system. For both the single-resolution
HMM and the MHMM, computational complexity depends on
many parameters including the number of states in a model and
parameters that control the extent of approximation taken by
the path-constrained Viterbi algorithm. Instead of comparing
computational time directly, we compare classification perfor-
mance given roughly equal computational time. The average
CPU time to classify a aerial image with the HMM
described previously is 200 s. With a 2-D MHMM described in
Table I (bottom right) and somewhat arbitrarily chosen parame-
ters required by the path-constrained Viterbi algorithm, the av-
erage user CPU time to classify one image is 192 s, slightly less
than that with the HMM. The average classification error rate is
17.32%, 8% lower than the error rate achieved with the HMM.
By using the more sophisticated model given by Table I (top)
and more computation, the error rate can be improved further to
16.02%. With the HMM, however, applying more sophisticated
models and more computation does not yield considerable im-
provement in performance.

The average user CPU time to classify one aerial image
is 0.2 s for Fast Algorithm 1 and 7.3 s for Fast Algorithm 2,
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much faster than the previous algorithms based on HMMs
and MHMMs. The computation time of Fast Algorithm 1 is
very close to that of CART, which is 0.16 s on average. In all
cases, the classification time provided here does not include
the common feature computation time, which is a few seconds.
In the case of Fast Algorithm 1, the feature computation is the
primary computational cost.

VIII. T ESTING MODELS

Although good results are achieved by algorithms based on
the HMMs and MHMMs, which intuitively justify the models,
in this section we examine the validity of the models for images
more formally by testing their goodness of fit. The main reason
for proposing the models is to balance their accuracy and com-
putational complexity; that they are absolutely correct is not re-
ally an issue. The purpose of testing is thus more for gaining
insight into how improvements can be made rather than for ar-
guing the literal truthfulness of the models.

A. Test of Normality

A 2-D HMM assumes that given its state, a feature vector is
Gaussian-distributed. The parameters of the Gaussian distribu-
tion depend on the state. In order to test the normality of feature
vectors in a particular state, the states of the entire data set are
searched according to the MAP (maximuma posteriori) rule
using an estimated model. Feature vectors in each state are then
collected as data to verify the assumption of normality. The test
was performed on the aerial image data set described in Sec-
tion VII. The model used is a single-resolution hidden Markov
model with five states for the natural class and nine states for
the man-made class.

The test of normality is based on the well-known fact that
a multivariate normal distribution with covariance proportional
to the identity is uniform in direction. No matter the covari-
ance, its projection onto any direction has a normal distribution.
For a general Gaussian distribution, a translation followed by a
linear transform can generate a random vector with unit spher-
ical normal distribution, perhaps in dimension lower than that
of the original data. This process is usually referred to as decor-
relation, or whitening.

For each state of the model, the normality of feature vectors
was tested. The data were decorrelated and then projected onto
a variety of directions. The normal probability plot [4] for every
projection was drawn. If a random variable follows the normal
distribution, the plot should be roughly a straight line through
the origin with unit slope. The projection directions include in-
dividual components of the vector, the average of all the com-
ponents, differences between all pairs of components, and seven
random directions. Since the feature vectors are eight-dimen-
sional, 44 directions were tested in all. Limitations of space pre-
clude showing all the plots here. Therefore, details are shown for
one state which is representative of the others.

Fig. 10(a) is the normal probability plots for each of the eight
components. Counted row-wise, the seventh and eighth plots in
Fig. 10(a) show typical “bad” fit to the normal distribution for
projections onto individual components, whereas the first plot is
a typical “good” fit. “Bad” plots are characterized by data that

are truncated below and with heavy upper tails. Most plots re-
semble the fourth to sixth plots in Fig. 10(a), which are slightly
curved. Fig. 10(b) shows plots for the average of all the com-
ponents (the first plot) and projections onto random directions.
We see that the average and the projections onto the random
directions fit better with the normal distribution than do the in-
dividual components. These are due to a “central limit effect”
and are shown consistently by the other states. Fig. 11 presents
the normal probability plots for differences between some pairs
of components. Differences between components also tend to
fit normality better than the individual components for all the
states. A typical “good” fit is shown by the third and the sev-
enth plots, which are aligned with the ideal straight line over
a broad range. A typical “bad” fit is shown by the second and
sixth plots, which only deviate slightly from the straight line.
But here, “bad” means heavy lower tails and truncated upper
tails.

B. Test of the Markovian Assumption

For 2-D HMMs, it is assumed that given the states of the
two neighboring blocks (right to the left and above), the state
of a block is conditionally independent of the other blocks in
the “past.” In particular, “past” means all the blocks above and
to the left. In this section, we test three cases of conditional
independence given the states of block and

: the independence of

and

For notational simplicity, we refer to the three cases as Cases 1,
2, and 3, which are shown in Fig. 12.

For 2-D MHMMs, two assumptions are tested. One is the
Markovian assumption that given the state of a block at reso-
lution , the state of its parent block at resolution and
the states of its child blocks at resolution are indepen-
dent. A special case investigated is the conditional independence
of block and one of its grandchild blocks

, , , . Fig. 13(a)
shows the conditioned and tested blocks. The other assumption
tested is that given the states of parent blocks at resolution, the
states of nonsibling blocks at resolution are independent.
In particular, a worst possible case is discussed, that is, given the
states of two adjacent blocks at resolution, the states of their
two adjacent child blocks are independent. The spatial relation
of those blocks is shown in Fig. 13(b).

As with the test of normality in the previous section, the test of
independence was performed on the aerial image data set. States
were searched by the MAP rule. Then, the test was performed
on those states. In the case of the HMM, the same model for the
test of normality was used. For the MHMM, the three-resolution
model described by Table I (bottom right) was used.

To test the conditional independence, for each fixed pair of
conditional states, a permutation test [23], [8] was applied.
The idea of a permutation test dates back to Fisher’s exact test
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(a)

(b)

Fig. 10. Normal probability plots for one state. (a) Each component. (b) The average of all the components and projections onto random directions.

[15] of independence in a contingency table [4]. In prin-
ciple, Fisher’s exact test can be generalized to testing inde-
pendence of an contingency table. The difficulty is with
computational complexity, which seriously constrains the use
of exact tests. Mehta and Patel [27] have taken a network ap-
proach to achieve computational feasibility. Boyett [8] proposed
subsampling random permutations to reduce computation. The
random permutation approach is taken here for simplicity.

Suppose the test for independence is for block
and (Case 1 of the HMM). The entry in the

contingency table is the number of occurrences for
being in state and being in state . Denote the
marginal counts by

and

where is the total number of states. For each , generate
indices . A list is generated by assembling indices
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Fig. 11. Normal probability plots for one state: differences between pairs of components.

Fig. 12. Tests of conditional independence for the HMM. The states of gray
blocks are conditional states; the states of white blocks are states upon which
tests for independence were performed.

(a) (b)

Fig. 13. Tests of the MHMM assumptions. (a) Markovian property across
resolutions. (b) Conditional independence of child blocks descended from
different parent blocks. The states of gray blocks are conditional states; the
states of dotted blocks are states upon which tests for independence were
performed.

in a certain order. A permutation is obtained by randomly per-
muting the second numberwhile fixing the order of the first
number . For an example contingency table

a list as follows is generated:

Fixing the first row and permuting the second row might yield
a list

The permutation yields new counts for the number of in
the list, denoted as . Note that the marginal counts remain
unaltered; that is,

For the particular case of the above list, the new contingency
table is

For both the original contingency table and those generated
by random permutations, we compute Pearson’sstatistic [4]

(12)

The quantity is replaced by for tables generated by
permutations. Denote the statistic of the original contingency
table as . The -value for the original contingency table is

number of contingency tables for which
number of permutations

The number of permutations used was 1000.
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Since conditional independence is of concern,-values were
computed for each condition. The HMM in discussion has a
total of 14 states, which yield conditions, each corre-
sponding to a pair of states for neighboring blocks above and to
the left. We thus have 196-values for each case of the inde-
pendence tests shown in Fig. 12. For Cases 1, 2, and 3, the me-
dians of the -values are and respectively.
The percentage of-values above 0.05 for Cases 1, 2, and 3 is
around 50%, 95%, and 90%, correspondingly. Results show that
Cases 2 and 3 fit the conditional independence assumption about
equally well, and much better than does Case 1. This coincides
with our intuition. We expect that the conditional independence
assumption is less true for Case 1 since the two blocks under
examination touch at a corner.

To test the Markovian property across resolutions for the 2-D
MHMM, -values were computed for each of the six condi-
tional states at Resolution 2. Among the six-values, one is

, another is , and all the other four are below , indi-
cating strong dependence between Resolution 1 and 3. However,
the Markovian property across resolutions is usually assumed
to maintain computational tractability. For the testing of condi-
tional independence of nonsibling blocks, there are
state pairs of parent blocks, each of which is a condition. The
median of the 36 -values was . About 70% of them were
above . Therefore, for most conditions, there is no strong
evidence for dependence between blocks descended from dif-
ferent parents.

IX. CONCLUSIONS

In this paper, a multiresolution 2-D hidden Markov model is
proposed for image classification, which represents images by
feature vectors at several resolutions. At any particular resolu-
tion, the feature vectors are statistically dependent through an
underlying Markov mesh state process, similar to the assump-
tions of a 2-D HMM. The feature vectors are also statistically
dependent across resolutions according to a hierarchical struc-
ture. The application to aerial images showed results superior
to those of the algorithm based on single-resolution HMMs. As
the hierarchical structure of the multiresolution model is natu-
rally suited to progressive classification if we relax the MAP
rule, suboptimal fast algorithms were developed by searching
for states in a layered fashion instead of the joint optimization.

As classification performance depends on the extent to which
2-D multiresolution hidden Markov models apply, the model as-
sumptions were tested. First, we tested, at least informally, the
assumption that feature vectors are Gaussian-distributed given
states. Normal probability plots show that the Gaussian assump-
tion is quite accurate. Second, we tested the Markovian prop-
erties of states across resolutions and within a resolution. A
permutation test was used to test the conditional indepen-
dence of states. The results do not strongly support the Mar-
kovian property across resolutions, but this assumption is usu-
ally needed to maintain computational tractability. At a fixed
resolution, the bias of the Markovian property assumed by the
HMM is primarily due to assuming the conditional indepen-
dence of a state and its neighboring state at the left upper corner
given the left and above neighboring states. Therefore, to im-

prove a 2-D HMM, future work should include the left upper
neighbor in the conditioned states of transition probabilities.
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