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Abstract

An ensemble of forecasts generated by different model simulations provides rich information for

meteorologists about impending weather such as precipitating clouds. One major form of forecasts

presents cloud images created by multiple ensemble members. Common features identified from

these images are often used as the consensus prediction of the entire ensemble, while the variation

among the images indicates forecast uncertainty. However, the large number of images and the

possibly tremendous extent of dissimilarity between them pose cognitive challenges for decision

making. In this paper, we develop novel methods for summarizing an ensemble of forecasts

represented by cloud images and call them collectively the Geometry-Sensitive Ensemble Mean

(GEM) toolkit. Conventional pixel-wise or feature-based averaging either loses interesting geometry

information or focuses narrowly on some pre-chosen characteristics of the clouds to be forecasted.

In GEM, we represent a cloud simulation by a Gaussian mixture model, which captures cloud shapes

effectively without making special assumptions. Furthermore, using a state-of-the-art optimization

algorithm, we compute the Wasserstein barycenter for a set of distributional entities, which can be

considered as the consensus mean or centroid under the Wasserstein metric. Experimental results

on two sets of ensemble simulated images are provided. Supplemental materials for the article are

available online.
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1 Introduction

One important challenge for meteorologists is to effectively integrate simulated forecasting results from

multiple numerical weather prediction models or many different forecast realizations by the same model.

The collection of these model forecasts is called an ensemble while each forecast realization is called

an ensemble member. The report by National Research Council et al. (2006) and the seminal book by

Kalnay (2002) have detailed discussion on the necessity of ensembles and the demand for more effective

use of ensembles in decision making. Extracting overall patterns by direct inspection of a large number

of ensemble simulations is prone to subjectivity, not to mention the difficulty on the inspector (i.e., the

weather forecaster). In extreme weather conditions, these decisions bear enormous economical and life-

saving consequences. However, human cognition is severely limited when supplied with even a moderate

number of possibilities, especially when these possible solutions (ensemble realizations) are not similar.

This constitutes a classical example of “information overload” for weather forecasters. It is thus valuable

if computer software can automatically summarize the ensemble simulations, in particular in search for

the most likely forecast scenario(s) and the associated uncertainties.

In the inspiring work of Sivillo, Ahlquist, and Toth (1997), high-level principles are discussed for

ensemble forecasting. Specifically, five fundamental problems are raised, among which is how to display

information effectively from an ensemble. Despite the fact that information overload is posed as a central

challenge by those authors, existing work to address the challenge is rather limited. Although a few

practices have been adopted, we have yet to see systematic development of tools aimed squarely at

optimal presentation of ensemble forecasts and capable of handling various types of forecasts. Our work

here is an effort in this direction. Currently, examples of ensemble visualization include (1) “spaghetti

diagrams” which show plan view map images containing contour lines for the quantities (e.g., clouds)

from each ensemble member, and (2) “thumbnail sketches” or “postage stamps” which are a collection

of individual miniature images generated from each ensemble member.

For an ensemble of simulated cloud images predicted by different members, it is challenging to

synthesize them into one or a few most likely scenarios in a meaningful way although the task may

seem deceivingly easy. At present, the most common practice of aggregating meteorological ensemble

forecasts is to use the equally weighted average of all ensemble members as the ensemble mean and

to use the standard deviation as the uncertainty estimate (Leith, 1974; Molteni et al., 1996; Toth and
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Kalnay, 1997; Sivillo, Ahlquist, and Toth, 1997). A statistical approach to ensemble post-processing

was pioneered by Raftery et al. (2005), who proposed Bayesian Model Averaging (BMA) to generate

a weighted ensemble average. The weights depend on the prior performance of individual members

of the ensemble. BMA has been found to improve forecasting performance over the equally weighted

mean, and in the meanwhile the analysis provides a theoretically solid framework for quantifying both

between-model and within-model uncertainty in forecasting.

For the ensemble of cloud simulations, however, because of the large disparity among members

within the ensemble, direct pixel-wise averaging will result in a “smeared out” cloud image (see Figure 4

(a)), losing critical characteristics about shape, orientation, etc. To preserve the cloud property without

smearing or over-smoothing as in the simple average, the ensemble member that has the highest weight

or probability is sometimes used as the consensus estimate which may not be representative of the

full ensemble (Melhauser and Zhang, 2012). Various clustering analyses have also been proposed to

synthesize the ensemble forecasts but so far the approach has been applied to rather low-dimensional

summarized forecast products such as hurricane tracks (Don et al., 2016). We call such an approach

parametric. Although the low-dimensional characterization of forecasts is useful when we focus on a

particular aspect such as hurricane tracks, a significant portion of the information about the original

imagery data is lost. If another aspect of the forecasts is to be examined, the analysis system has to be

re-designed. It is also difficult to correlate multiple features about the forecasts since the analysis is not

performed in the image space. For human cognition, it is more natural to inspect synthesized images

rather than synthesized summary features.

In this paper, we propose a new paradigm of creating synthesized mean (or average, centroid) images

for ensembles of cloud simulations. We call the collection of methods developed here the Geometry-

Sensitive Ensemble Mean (GEM) toolkit. We aim at addressing the limitations of existing approaches of

pixel-wise averaging or low-dimensional feature-based summary. We have developed three schemes for

synthesizing images. These schemes are under the same principles of synthesis, sharing fundamentals

such as the image representation and the mathematical formulation for aggregating the representations.

Their differences are motivated by the various end users’ preferences for the final appearance of the

synthesized image. Although we use Bayesian posterior mean, which is similar to Raftery et al. (2005),

our purpose and setup are different. We focus on effective visualization of an ensemble under the scenario
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that prior information on the performance of ensemble members is not available. The Bayesian posteriors

are determined based on distances to a centroid representation of the images. Our work also differs from

Melhauser and Zhang (2012), which assumes that assessment of the likelihood of the members is given

by additional information. The Bayesian averaging method follows in spirit the empirical Bayesian

idea. The centroid of the ensemble helps to set the prior on the ensemble members. When finding a

representative member from the ensemble, our criterion is to be closest to the centroid, a stark contrast

from that of Melhauser and Zhang (2012).

Our main contribution is the development of methods to summarize cloud simulation images in a

geometrically meaningful way. A major novelty of our work is the GEM framework itself, which differs

profoundly from current practices. In existing work, images are treated as vectors of pixel intensities. We

propose a two-tier signature, a novel object-level representation, so that geometric traits of cloud patches

can be retained. Although we use an existing algorithm of Ye et al. (2017) for efficient computation of

the Wasserstein barycenter, the solution to barycenter alone does not trivially yield the summary images.

In fact, the barycenter only determines the center locations of the cloud patches. To generate each cloud

patch in the aggregated mean image, we have invented a method for integrating the shape and intensity

information of the cloud patches in the ensemble member images.

The rest of the paper is organized as follows. In Section 2, we explain the rationale for the framework

of GEM and provide preliminaries on Wasserstein distance and Wasserstein barycenter. We describe the

algorithms for the components in GEM and the evaluation methods in Section 3. Experimental results

are provided in Section 4. Finally, we conclude and discuss future work in Section 5.

2 Preliminaries

For meteorologists, the cloud intensity at one pixel is too localized to be of practical interest. On the other

hand, a completely parametric approach will impose strong assumptions on the shapes of the clouds,

which may often deviate grossly from reality, hence limiting applicability. The core issue here is thus

to achieve simultaneously sensitivity to the geometric characteristics of clouds and adaptivity to diverse

kinds of clouds simulated by different ensemble members. In this study, we propose two novel strategies

in synthesizing the ensemble simulations: (1) the definition of an effective cloud-map representation

(also called signature) with an unconventional mathematical structure and (2) the implementation of
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new machine learning tools for clustering and summarizing the signatures. Specifically, we want to

address the following two key questions:

• Q1: How can we formulate a cloud-map representation that captures explicitly and accurately the

essential geometric characteristics of clouds and in the mean time is flexible enough for treating

diverse cloud shapes?

• Q2: How can we efficiently create a consensus cloud simulation, that is, “ensemble centroid”,

such that key geometric characteristics of clouds in individual simulations are retained?

To address the first question (Q1), we propose a two-tier signature to represent a cloud map. The

image is first segmented into a set of cloud patches. The mean locations of the pixels in each patch

associated with the total cloud intensity values within each patch form the first tier of the representation

(called first-tier signature). At the second tier, the shape of each cloud patch is characterized by the

parameters of a Gaussian distribution fitted on the weighted pixel coordinates in the patch. The weight

of each pixel is proportional to its cloud intensity. Because each cloud patch examined is relatively local,

fitting one Gaussian distribution is adequate.

We call the data model of the two-tier signature a distributional entity, or in short a set representation.

We use the Wasserstein metric for the discrete distributions. Wasserstein metric (Rachev, 1985) takes

into consideration the underlying distances between the support points and hence has nicer geometric

property than Lp norm, a point to be elaborated in Section 2.2. Theoretically speaking, we can also

apply the Wasserstein metric to the set of all cloud pixels, but this is not the usual practice adopted for

the pixel representation because of computational intensity. In fact, if the Wasserstein distance is to be

employed, it is unnecessary to use such a high granularity, as we will show in the experiments later.

We now face the second question (Q2) because under the Wasserstein distance we lose the

conventional notion of a mean. The usual operation of computing mean in each dimension becomes

meaningless because the data are not vectors but sets containing unordered and dynamic points. Our

solution is to use the Wasserstein barycenter. A Wasserstein barycenter for a collection of distributions

is a distribution that minimizes the sum of its squared Wasserstein distances to all the distributions in

the collection. The barycenter is a counterpart of the arithmetic mean under the Euclidean distance

for vectors, which also minimizes the total squared Euclidean distance. The Wasserstein barycenter

produces geometrically meaningful “average” shapes, attracting growing attention in recent literature.
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Its power has been demonstrated in applications to 2-D and 3-D shapes (Benamou et al., 2015; Solomon

et al., 2015). The Wasserstein barycenter of the first-tier signatures provides the first-tier signature of

a “mean” or “average” simulation. We can take this first-tier signature as a “skeleton” for the “mean”

cloud simulation. In order to create an ensemble centroid that has cloud masses resembling those in the

ensemble, we propose three schemes. They exploit the optimal transport between the barycenter and the

first-tier signatures of individual cloud maps. Moreover, at the choice of the user, an ensemble can be

treated as one group or multiple subgroups formed by D2-clustering (Li and Wang, 2008).

2.1 Mean Images by GEM

We now introduce the three schemes of deriving the mean image for a group of images. The detailed

algorithms will be presented in Section 3.

1. Mixture Density Mean (MDM) image: This is a cloud simulation that serves as a summary of all the

cloud simulations in an ensemble. The first-tier signature of MDM is the Wasserstein barycenter

of the first-tier signatures in the ensemble. The cloud mass at each location is then created by

covariance fusion.

2. Bayesian Posterior Mean (BPM) image: We propose a Bayesian model that treats the aggregated

mean image as an unobserved “true” image and the image given by any forecasting result as a

random sample governed by a certain distribution. We propose schemes to set up the prior and

conditional distributions. The “true” image is then estimated by the Bayesian posterior mean.

3. In-sample Mean under Rigid Motion (IM-RM) image: Given a set of instances and a centroid

instance, which may or may not be a member of the set, the in-sample mean is the instance from

the set that is closest to the centroid. For instance, if the centroid of a group of vectors is their

arithmetic mean, then the in-sample mean is the vector closest to the arithmetic mean.

For each cloud image in the ensemble, we find the optimal rotation and translation, called rigid

motion together, that align its first-tier signature with the Wasserstein barycenter. We call the

rigid motion solved by this method Wasserstein Barycenter Guided Rigid Motion (WB-RM).

We transform each cloud map by WB-RM. The IM-RM image is the in-sample mean of all the
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transformed cloud maps when the MDM image is taken as the centroid. The purpose is to provide

an average cloud map with the appearance of a simulated image by a forecasting model.

We refer to the MDM, BPM, and IM-RM images as the aggregated simulation. Each of them can be

used as the ensemble centroid/mean.

(a)

(b)

Figure 1: Illustration for the Wasserstein metric. (a) Compare the complexity of different types of
image representations including feature-based vectors, pixel-based vectors, and the set of unordered and
dynamic vectors under the Wasserstein metric; (b) Four examples of discrete distributions and their
Wasserstein distances to the reference distribution (first on the left).

2.2 Wasserstein Distance and Barycenter

The Wasserstein distance is a true metric defined for general probability measures. A thorough treatment

of this metric and its applications in probability theory are referred to Rachev (1985). The Wasserstein

metric is well defined for distributions with different support points, an important difference from some

popular distances between distributions such as Kullback-Leibler (KL) divergence. It corresponds well

with our heuristics. When we assess the similarity between two cloud images, we tend to build a
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correspondence between the cloud patches across the two images and combine the distances between

cloud patches into an overall one for the whole images.

Consider two discrete distributions P(a) = {(w(a)
i , x

(a)
i ), i = 1, ...,ma} and P(b) = {(w(b)

j , x
(b)
j ), j =

1, ...,mb}, where w(a)
i (or w(b)

j ) is the probability assigned to support point x(a)
i (or x(b)

j ), x(a)
i , x

(b)
j ∈ Rd

(Rd is the d-dimensional Euclidean space). Let Ja = {1, ...,ma}, Jb = {1, ...,mb}. Denote the Lp norm

by ‖ · ‖p. Denote the Wasserstein metric under Lp norm between P(a) and P(b) by Wp(P(a),P(b)). Then

(
Wp(P(a),P(b))

)p
:= min
{πi,j>0}

∑
i∈Ja,j∈Jb

πi,j‖x(a)
i − x

(b)
j ‖pp ,

s.t.
∑ma

i=1 πi,j = w
(b)
j , ∀j ∈ Jb∑mb

j=1 πi,j = w
(a)
i , ∀i ∈ Ja .

(1)

It is proved that the above definition is a true metric under any Lp norm, where p ≥ 1. We usually use the

L2 norm. For brevity of notation, we will simply denote W2 as W in the rest of the paper. We call {πi,j}

the matching weights or the optimal transport. Denote the optimal transport between P(a) and P(a) by

Π(P(a),P(b)) = (πi,j)i∈Ja,j∈Jb .

In Figure 1 (a), we illustrate the complexity of a set representation and the complexity of Wasserstein

distance defined on weighted sets. In terms of the amount of quantities contained in the representation, a

set representation lies between a single feature vector and a pixel representation, and can reach either of

the two extreme cases. We denote loosely in the figure the number of quantities in a representation

as dimension although this terminology is not accurate for the set representation. In terms of the

mathematical structure, both the feature vector and the pixel representation are ordered, meaning

that any quantity is associated with a dimension of fixed meaning. However, a set representation

comprises unordered weighted vectors. Both the weight and the vector itself vary across instances

and have to be stored. The left panel in the figure compares the complexity of several distances. The

computational cost of Lp norm increases linearly with dimension. However, the Wasserstein distance

has no closed form solution and is solved by linear programming (LP). If standard LP numerical

algorithms are applied, the complexity grows at least in polynomial orders on average. Designing

scalable algorithms to solve the Wasserstein distance is an active research area. Even the state-of-the-art

algorithms have computational complexity higher than that of Lp norm by several orders of magnitude.
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Nevertheless, with the computational power of current typical desktop computers and the recent advance

on numerical algorithms, statistical/machine learning methods based on the Wasserstein distance are

attracting increasing attentions (Cuturi and Doucet, 2014; Rabin et al., 2011).

One appeal of the Wasserstein metric in contrast to popular distances such as L2 (Euclidean distance)

based on histograms or KL divergences is that it takes into account the geometric relationship between

the support points. We illustrate this by an example in Figure 1 (b). Consider four discrete distributions

with a common support set: x1 = (30.0, 28.0)t, x2 = (65.0, 54.0)t, x3 = (72.0, 120.0)t, and

x4 = (107.0, 128.0)t. The distributions differ in the probabilities assigned to each support point. For

every distribution, one support point has probability 0.43, while the other three have probability 0.19.

For distribution P(i) of random vector X ∈ R2, P (X = xi) = 0.43, i = 1, ..., 4. Let us use P(1) as

the reference distribution. Obviously, under either the L2 norm for the vector of probabilities on the

support points or the KL divergence, the distance between P(i), i = 2, 3, 4, and P(1) is a constant. For

instance, the KL divergence D(P(1)‖P(i)) = 0.196, i = 2, 3, 4. These two distances do not depend on

the underlying distances between the support points. For better visualization, we show each distribution

as an image. The pixel intensity is proportional to a Gaussian mixture density with four components

each centered at one xi. The prior for a component is the probability at xi. The covariance matrix is

spherical and identical across the components. Note that the Gaussian mixture density is used solely for

visualization purpose and its covariance matrices for each component are irrelevant to the Wasserstein

distances computed here. The Wasserstein distances areW (P(1),P(2)) = 21.36,W (P(1),P(3)) = 41.35,

W (P(1),P(2)) = 45.78. An inspection of the images in Figure 1 (b) suggests that these distance values

reflect better our heuristics about the closeness of the images.

The Wasserstein barycenter for a collection of distributions is the counterpart of the arithmetic

mean for vectors. Under the Euclidean distance, the arithmetic mean minimizes the total squared

distance to all the vectors. Consider a discrete distribution Q with a pre-selected support size m̃:

Q = {(πi, xi), i = 1, ..., m̃}. The Wasserstein barycenter minimizes the total squared Wasserstein

distances to the members of a set of distributions {P(1), ...,P(N)}:

min
Q

N∑
i=1

W 2(Q,P(i)) . (2)

The above Wasserstein barycenter problem can be extended to a clustering problem using the commonly
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adopted principle of minimum within cluster variation. Suppose we cluster the distributions P(l)’s into

K clusters each with a centroid distribution Q(k), k = 1, ..., K. The optimization problem

min
Q(1),...,Q(K)

N∑
i=1

min
k=1,...,K

W 2(Q(k),P(i))

is called D2-clustering by Li and Wang (2008). It is mathematically challenging to solve the Wasserstein

barycenter and even more so D2-clustering. We use the Accelerated D2 (AD2)-Clustering algorithm of

Ye et al. (2017).

The phrase “barycenter” was coined by Agueh and Carlier (2011), who established the existence,

uniqueness, and other theoretical properties of 2nd-order Wasserstein barycenter for continuous

measures in the Euclidean space. For the special case of discrete distributions with finite but dynamic

support sets, an algorithm to compute the barycenter was developed earlier by Li and Wang (2008), but

that algorithm has strong limitation in scalability. Much effort has been devoted to the development

of computationally efficient algorithms for Wasserstein barycenters in recent years, e.g., (Cuturi and

Doucet, 2014; Benamou et al., 2015; Ye et al., 2017). A series of interesting work related to Wasserstein

distance and barycenter has appeared in statistics literature recently. Minsker et al. (2014) and Srivastava,

Li, and Dunson (2015) developed divide-and-conquer strategies for Bayesian inference on big data.

Specifically, posterior distributions estimated from subsets of data are combined through their median

distribution (e.g., in the Wasserstein metric space) (Minsker et al., 2014) or barycenter (Srivastava, Li,

and Dunson, 2015). Li, Srivastava, and Dunson (2017) applied Wasserstein barycenter to estimate

a posterior interval for massive data. Carlier, Chernozhukov, and Galichon (2016) extended quantile

regression to vector-valued response using optimal transport. Sommerfeld and Munk (2016) derived the

asymptotic distribution of empirical Wasserstein distances. Our purpose of using Wasserstein barycenter

is different from the aforementioned works; and we use the state-of-the-art algorithm by Ye et al. (2017)

with complexity linear in the data size.

3 Algorithms

Suppose an image contains nv × nh pixels, where nv is the number of rows and nh is the number of

columns in the image. A grayscale digital image is essentially a matrix of size nv × nh, where each
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element records the value of the pixel at the corresponding position in the image plane. In our case, the

value of a pixel is the cloud intensity at this pixel. Denote an entire image by I. For a pixel with spatial

coordinates z = (zv, zh) where zv = 0, 1, ..., nv − 1 is the vertical position and zh = 0, 1, ..., nh − 1

is the horizontal position, we denote its value by I(z). We may define an image by specifying I(z) at

every z, as is done in Sections 3.2 and 3.4. In Section 3.3, we regard I as a random vector of dimension

nv× nh, which is formed by stacking the rows of the image matrix. It is then unnecessary to define I(z)

for individual z’s, and hence we will define I using matrix operations.

3.1 Two-tier Signature of Images

We emphasize that the motivation for the two-tier signature is to represent a cloud simulation at the object

level so that cloud patches are extracted and specified directly by shape and location. Such high-level

information is more meaningful than pixel intensities are for meteorologists whose primary attention is

on patterns or characteristics of clouds. However, one pixel is very localized with respect to a cloud.

The intensity at a pixel often varies widely when the weather forecasting model or parameters change.

As a result, a straightforward pixel-wise average tends to eliminate important traits of clouds, which will

be demonstrated clearly by our experiments. In addition, being a much more compact representation of

cloud simulation images, the two-tier signature offers computational advantage for certain algorithms,

but its purpose is deeper than data reduction.

In Figure 2 (a), we illustrate the two-tier signature and compare it with the straightforward pixel

representation of the image as well as a feature vector representation. The number of cloud patches

corresponds to the granularity level of the first-tier representation. At one extreme, when each cloud

pixel is treated as one cloud patch, we obtain essentially the pixel representation, in which case the cloud

shapes become meaningless for individual pixels. In contrast, in the two-tier signature, some features

describe the shape directly. At the other extreme, the entire cloud image is characterized by one feature

vector containing shape variables. Although one feature vector per instance is the standard data model

in machine learning, it is inadequate to capture the complexity in the shapes of the clouds.

A pixel representation is usually treated as a high dimensional vector. Every pixel corresponds to one

dimension, and the cloud intensity at the pixel is its value. The underlying meanings of the dimensions

play no role in the analysis. For instance, in our case, the pixels are all from one image plane and have
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intrinsic geometric relationship, but this relationship is ignored in a dimensional treatment. In contrast,

the first-tier signature is essentially a discrete distribution over the cloud locations after normalizing the

cloud intensities on each patch. The cloud locations (i.e., the support points of the distribution) are

dynamic and stored as part of the signature (see Figure 2 (a)).

(a)

(b)

Figure 2: Two-tier image signature. (a) An illustration for how the two-tier representation of cloud
simulation images captures the geometry of the clouds without imposing strong assumptions, and why it
is a unified framework under which the pixel-wise and feature vector representations are extreme cases.
(b) An example to show the process of signature extraction. Left: Original image and the single Gaussian
fitted; Middle: The cells generated which are marked by different colors; Right: The segmented clouds
marked by boundaries of different colors and the fitted Gaussians to each of the segmented clouds.

We use the hierarchical mode association clustering (HMAC) algorithm by Li, Ray, and Lindsay

(2007) to segment clouds. HMAC clusters data based on modes of a fitted kernel density. It merges data

in a hierarchical fashion by gradually increasing the kernel bandwidth. It is found that HMAC is robust

for non-Gaussian shape clouds and guarantees strong separation between clusters. Example applications

of HMAC include Ray and Pyne (2012). The granularity of the segments can be easily adjusted by

changing the kernel bandwidth. We create a signature for an image by the following process.
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1. We first convert the image into a weighted set of pixel coordinates. For any pixel with positive

cloud intensity, the horizontal and vertical coordinates of the pixel in the image plane are treated

as a two-dimensional data point in the set and the cloud intensity at the pixel is taken as the

weight assigned to this point. Clearly, we can fully reconstruct the image based on this data

set. Denote this data set by X = {x1, x2, ..., xn}, where n is the number of non-zero pixels

and xi = (xi,1, xi,2)t, called pixel location, contains the vertical coordinate xi,1 and horizontal

coordinate xi,2. Note that vectors are always assumed to be column vectors in this paper. Each

pixel location xi is associated with a weight wi that equals the cloud intensity at this pixel.

2. For the sake of computational efficiency, we first summarize X by a large set of cells. Here, a

cell is a group of pixels that are closely positioned, and it is acceptable not to distinguish pixels

inside the cell. In another word, we quantize X so that clustering is later applied to a smaller

set of representative points instead of the original points. The number of representative points is

still greater than the possible number of cloud patches by one to several orders of magnitude. We

employ the weighted k-means, also known as the weighted Lloyd algorithm in vector quantization,

to divide the points into the cells. The centroid (also referred to as codewords) of each cell is

defined as the weighted average of pixel positions. Suppose X are partitioned into n′ cells. Denote

the center of each cell by x′i, i = 1, ..., n′. Again, x′i is associated with weight w′i, where w′i is the

sum of the weights of the points in cell i. Let X ′ = {x′1, x′2, ..., x′n′} andW ′ = {w′1, ..., w′n′}.

3. Apply 2-level HMAC to X ′ with weightsW ′. The bandwidths used in HMAC determine the final

number of clusters. We treat each cluster as one cloud segment, also called cloud patch. Once the

cluster label of each cell is determined, the pixels in the cell will inherit its label. We thus obtain a

segmentation of the pixels.

4. Suppose K cloud segments have been generated. Let Ck be the set of indices for xi’s that are

contained in the kth cluster. For each cloud segment k, k = 1, ..., K, we extract the following

summary information.

(a) The total cloud intensity sk =
∑

i∈Ck wi.

(b) The weighted center of the pixels µk =
∑

i∈Ck wixi/sk.

(c) The weighted covariance matrix of the pixels Σk =
∑

i∈Ck wi(xi − µk)
t(xi − µk)/sk.
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We denote the two-tier signature of the lth image by M(l) = {P(l),G(l)}, where P(l) is the first-tier

signature and G(l) is the second-tier signature. For the notations sk, µk, and Σk, we add superscript (l)

to indicate those quantities for the lth image. Suppose there are ml cloud patches in the lth image. Let

s̆(l) =
∑ml

j=1 s
(l)
j be the total sum of cloud intensity and s̃(l)

j = s
(l)
j /s̆

(l). Then P(l) = {(s̃(l)
j , µ

(l)
j ), j =

1, ...,ml} and G(l) = {Σ(l)
j , j = 1, ...,ml}. The two-tier signature of an image is essentially a Gaussian

mixture model (GMM) (see Banfield and Raftery (1993); Melnykov and Maitra (2010) for survey on

GMM). Our usage of GMM here is somewhat unusual. Instead of using GMM as a tool to model data

distribution, we use it as a representation of a single object in an unsupervised learning framework. We

exploit its capacity to retain the geometric characteristics of an image in a compact form.

We now use an example to illustrate the above process. In Figure 2 (b), we show the original cloud

image, the cells generated, and the modal clustering result. We visualize the signature of the cloud

image in the right panel of the figure. Each ellipse, corresponding to one cloud cluster, is centered at

the center location of the cluster, and its orientation and size are determined by the covariance matrix of

pixels in the cluster. Specifically, the long and short major axis of the ellipse are given by the first and

second principal component directions computed from the covariance matrix. The radius of the ellipse

is 1.65
√
λi, i = 1, 2, where λi is the ith eigenvalue of the covariance matrix. Geometrically,

√
λi is the

standard deviation of the data projected onto the ith principal component direction. If we approximate

the distribution of the projected data by a Gaussian, roughly 90% of the data will deviate from the mean

by no more than 1.65
√
λi. The yellow ellipse in the image at the left shows the contour of a single

Gaussian distribution fitted on the cloud intensities. Clearly, given the non-elliptical shape of the cloud

and the scattering of multiple patches of clouds in one image, the two-tier signature captures the cloud

shape significantly better than a single fitted Gaussian.

3.2 Mixture Density Mean Image based on Wasserstein Barycenters

To generate the Mixture Density Mean (MDM) image as a summary of the cloud simulations in an

ensemble, we first solve the Wasserstein barycenter for the first-tier signatures P(l), l = 1, ..., N , in

the ensemble. We then aggregate the shapes of the cloud patches using the second-tier signature G(l).

Denote the barycenter distribution by Q. Let Q = {(αj, µ∗j), j = 1, ..., m̄}, where αj is the probability

on support point µ∗j . The steps are detailed below.
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1. Let the average number of cloud patches (rounded to the nearest integer) in an image be m̄ =[∑N
l=1 ml/N

]
. We set the support size of the barycenter Q to m̄. We use the modified Bregman-

ADMM (Alternating Direction Method of Multipliers) algorithm recently developed by Ye et al.

(2017) to compute the barycenter Q.

2. We also compute the optimal transport (matching weights) between P(l) and Q: Π(P(l),Q) =

(π
(l)
i,j ), i = 1, ...,ml, j = 1, ..., m̄. Recall that the covariance matrix for the ith cloud patch in the

lth image is Σ
(l)
i and the total cloud intensity in this patch is s(l)

i . Denote the covariance matrix

for the jth aggregated cloud patch by Σ̄j , j = 1, ..., m̄. Define Σ̄j =
1

N

N∑
l=1

∑ml

i=1 π
(l)
i,jΣ

(l)
i∑ml

i=1 π
(l)
i,j

. The

rationale for the definition is to integrate all the cloud patches in all the images that have been

matched to the jth cloud patch in the barycenter. As optimal transport generates a soft matching

specified by the weights π(l)
i,j for the ith cloud patch in the lth image, we define Σ̄j by the above

weighted average.

3. Denote the MDM image by IMDM. Denote the density function of a Gaussian distribution by φ(·).

Let f(x) =
∑m̄

i=1 αiφi(x | µ∗i , Σ̄i) be the mixture density of Gaussian distributions, where µ∗i is the

ith support point of the barycenter distribution Q and αi is its probability. Suppose the image has

nv rows and nh columns. Recall that the total cloud intensity for the lth image is s̆(l) =
∑ml

i=1 s
(l)
i .

Denote their mean by s̄ = 1
N

∑N
l=1 s̆

(l). Consider a pixel with spatial coordinates (zv, zh) where zv

is the vertical position, zv = 0, 1, ..., nv − 1, and zh is the horizontal position, zh = 0, ..., nh − 1 in

IMDM. Then the pixel intensity of IMDM at z = (zv, zh) is given by

IMDM(z) =
s̄f(z)∑

z′∈[0,...,nv]×[0,...,nh] f(z′)
.

The normalization above ensures that the total cloud intensity in IMDM is the same as the average

total cloud intensity of all the images.

We have so far assumed that we want to aggregate all the cloud images in an ensemble into one

centroid image. If we believe that the cloud images fall into several subgroups and would like to

aggregate each group separately, we can first cluster the images using the D2-clustering algorithm. We

again use the fast algorithm of Ye et al. (2017).
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3.3 Bayesian Posterior Mean Image

Denote an ensemble of images by {I1, ..., IN}. Let the number of pixels in the images be nv × nh.

Consider each image as a vector formed by stacking the pixel intensities in the whole image. We

propose the following Bayesian model for estimating the true image I∗. We assume that I1, ..., IN
are conditionally independent given I∗, and the conditional density Ii | I∗ is multivariate Gaussian with

mean vector equal to I∗ and covariance matrix equal to σ2
i I, where I is the identity matrix. In addition,

we let the prior on I∗ be multivariate normal Nnv×nh(I(0), σ2
0I).

In order to choose the parameters in the model, we follow an empirical Bayesian spirit. In particular,

we take IMDM which is computed from the data as I(0). Recall that the first-tier signature of image Ii
is denoted by P(i), and the barycenter of P(i)’s is Q. We let σ2

i ∝ W 2(Q,P(i)), i = 1, ..., N , and

σ2
0 ∝ 1

N

∑N
i=1W

2(Q,P(i)). It can be shown that the posterior distribution of I∗ given {I1, ..., IN} is

Gaussian with posterior mean E(I∗ | I1, ..., IN) = w0IMDM +
N∑
i=1

wiIi, where the weights wi ∝ 1
σ2
i
,

i = 0, ..., N , and
∑N

i=0 wi = 1. We use the above posterior mean as the Bayesian posterior mean

(BPM) image, IBPM, for an ensemble. The wi’s can be calculated by knowing the σ2
i ’s up to a constant.

Specifically,

IBPM = w0IMDM +
N∑
i=1

wiIi ,

where w0 =

N∑N
j=1W

2(Q,P(j))

N∑N
j=1W

2(Q,P(j))
+
∑N

j=1
1

W 2(Q,P(j))

, wi =

1
W 2(Q,P(i))

N∑N
j=1W

2(Q,P(j))
+
∑N

j=1
1

W 2(Q,P(j))

.

The posterior covariance matrix of I∗ given {I1, ..., IN} is σ2
BPI, where σ2

BP is determined by
1

σ2
BP

=
N∑
i=0

1

σ2
i

. The estimation for σ2
BP, denoted by σ̂2

BP, can be obtained by estimating σ2
i first. Once

we have estimated I∗ by IBPM, we can estimate σ2
i , i = 1, ..., N , by σ̂2

0 =
‖IBPM − IMDM‖2

nv × nh
and

σ̂2
i =
‖IBPM − Ii‖2

nv × nh
.

3.4 In-Sample Mean under Rigid Motion

An MDM image is synthesized by modeling each cloud patch by a Gaussian distribution over the pixel

positions. The clouds look much smoother than those in the ensemble members. If we want to have an
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aggregated image resembling an ensemble member at high granularity, a natural idea is to use an existing

member closest to a mean/centroid image in some sense. We call such a member an in-sample mean.

Here we take the MDM image as the centroid. Because rigid motion of translation and rotation does not

change the appearance of clouds, we allow rigid motion to be applied before comparing an ensemble

member with the centroid image. We call this image the In-sample Mean under Rigid Motion (IM-RM).

Figure 3 provides the flow chart for generating the IM-RM image.

Figure 3: The flow chart for generating the IM-RM aggregated cloud simulation image.

We first optimize the rigid motion to be applied to any ensemble member by the Wasserstein

Barycenter Guided Rigid Motion (WB-RM) algorithm described below.

1. Consider the first-tier signature P(l) = {(s̃(l)
i , µ

(l)
i ), i = 1, ...,ml} of the lth image, l = 1, ..., N ,

and its optimal transport to the barycenter Q = {(αj, µ∗j), j = 1, ..., m̄}: Π(P(l),Q) = (π
(l)
i,j ),

i = 1, ...,ml, j = 1, ..., m̄. We compute the transported µ
(l)
i according to Π(P(l),Q) by

µ̃i =
∑m̄

j=1 π
(l)
i,jµ

∗
j/
∑m̄

j=1 π
(l)
i,j , i = 1, ...,ml.

2. We then optimize over a rotation matrix R and a translation ζ such that the transformed

µ
(l)
i , i = 1, ...,ml are closest to µ̃i, i = 1, ...,ml in an overall sense, that is, to solve

argmin
R,ζ

ml∑
i=1

s̃
(l)
i ‖(Rµ

(l)
i + ζ) − µ̃i‖2, where ‖ · ‖ is the L2 norm, and all the vectors are column

vectors. The algorithm of Sorkine-Hornung and Rabinovich (2017) is used to solve R and ζ .

3. Apply the rotation R and translation ζ to every pixel in the image to obtain a new image. Let the

coordinate vector in the image plane be z = (zv, zh)
t and the original image be I(z) and the image

after the rigid motion be IRM(z). Then IRM(z) = I(Rt(z − ζ)).
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Let the original images in the ensemble be Il, l = 1, ..., N . We use the above algorithm to obtain IRM,l.

We then compute the total pixel-wise squared distance between IRM,l and IMDM and choose image l∗ that

is closest to IMDM according to this distance. We define the IM-RM image IIM−RM = IRM,l∗ .

Since the points under rotation and translation are two-dimensional, the rotation matrix R is

determined by a rotation angle θ. The rigid motion parameters θ and ζ reflect how much motion is

needed to align P(l) with Q. Their histograms can show the amount of variations within an ensemble.

3.5 Evaluation

To evaluate the mean images generated by different methods, we propose a distance that directly takes

into account the shape, location, and intensity of cloud patches based on the two-tier signature. We

will not use a pixel-wise average distance between two images because of the intrinsic limitations of

the pixel-wise representation of cloud simulations, which are right at the heart of our motivation for

developing the GEM system. Detailed discussions have been provided in Section 2 and 3.1.

As each cloud patch in the two-tier signature is characterized by a multivariate Gaussian distribution

N (µ,Σ) whose mean vector µ corresponds to the center location of the cloud and covariance matrix Σ

reflects the shape, we use the Wasserstein distance between two Gaussian distributions as a measure of

similarity between two cloud patches. For Gaussian distributions with density functions φ1(x | µ1,Σ1)

and φ2(x | µ2,Σ2), the Wasserstein distance is given by a closed form (Givens and Shortt, 1984):

W 2(φ1, φ2) = ‖µ1 − µ2‖2 + tr

(
Σ1 + Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
)
. (3)

For two image signatures specified by GMMsM(i)(x) =
∑mi

j=1 s̃
(i)
j φ

(i)
j (x | µ(i)

j ,Σ
(i)
j ), i = 1, 2, we

consider each as a discrete distribution with probabilities (s̃
(i)
j )mi

j=1 over the parameter space of the mean

vector and covariance matrix. Using the Wasserstein distance in Eq. (3) as the baseline distance in the

parameter space, we can define a distance, denoted by W̃ (M(1),M(2)) based on optimal transport, in

the same way as in Eq. (1):

(
W̃ (M(1),M(2))

)2

:= min
{πi,j>0}

∑
i=1,...,m1, j=1,...,m2

πi,jW
2(φ

(1)
i , φ

(2)
j ) ,

s.t.
∑m1

i=1 πi,j = s̃
(2)
j , ∀j = 1, ...,m2 ;

∑m2

j=1 πi,j = s̃
(1)
i , ∀i = 1, ...,m1 .

(4)
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We call W̃ the Minimized Aggregated Wasserstein (MAW) distance. It was proposed by Chen, Ye,

and Li (2016) as a computationally efficient approximation to the Wasserstein distance between two

GMMs. MAW is particularly appealing for our evaluation purpose here because the distance between

two Gaussian densities decomposes clearly into one part corresponding to location and the other to shape.

Our second approach to evaluate the mean images focuses on the fidelity of the distribution of the

cloud intensities in an image, that is, marginal density of pixel values. The geometric information about

clouds is filtered out by the marginal density. Thus this way of evaluation is complementary to MAW.

Despite its restrictiveness, the marginal density captures important characteristics that meteorologists

care about. For instance, the peak value of cloud intensities in an image is a major indicator of the

strength of a weather system. In our experiments, we estimate the marginal density by normalized

histograms. L1 distance is then used to measure the difference between two histograms, each specified

by a vector of frequencies over the histogram bins.

4 Experiments

We apply the GEM toolkit to two ensemble sets of simulated cloud images (referred to as Ensemble 1

and 2). Each set contains 41 ensemble members generated by the same numerical weather prediction

model but with different initial conditions. More specifically, as detailed in Melhauser and Zhang

(2012), the two-way nested fully compressible, non-hydrostatic Weather Research and Forecast (WRF)

model (version 2.2; Skamarock et al. (2005)) is used to hindcast (apply forecasting to past events for

reasons such as testing) the weather conditions valid at 0600 UTC 10 June 2003. The same model

is initialized with 41 different initial conditions valid at 1200 UTC that include the mean estimated

posterior uncertainties from the data assimilation experiment reported in Meng and Zhang (2008). The

model used for this study employed 4 two-way nested domains with grid spacings of 90 km, 30km, 10km

and 3.3km, respectively (see Figure 3 of Melhauser and Zhang (2012)). The two ensembles of cloud

simulation images analyzed in this study were produced from the model that simulated radar reflectivity

from the two innermost model domains. Ensemble 2 is in a larger domain with larger physical distances

between pixels (10-km grid spacing) and Ensemble 1 is in a smaller subset domain but with smaller

distances between pixels (3.3-km grid spacing). The higher the pixel value, the stronger or more severe

the weather represented by the cloud is.
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We first extract the two-tier signature for each image using the algorithm in Section 3.1. By using

different kernel bandwidths in the HMAC segmentation algorithm, we obtained signatures at several

levels of granularity. As explained in Li, Ray, and Lindsay (2007), when a larger Gaussian kernel

bandwidth is used in density estimation, more Gaussian components tend to merge into the same

mode, and thus fewer clusters are obtained (corresponding to lower granularity). The Gaussian kernel

bandwidth used by HMAC is the only tuning parameter required to generate the synthetic mean image

by any of the three schemes. We lack an objective criterion to decide this parameter based on the

images themselves, which are the only information assumed by our current visualization system. On

the other hand, because this parameter corresponds in a simple manner to the granularity of the cloud

patches, we expect that users, primarily meteorologists, may be able to calibrate the parameter based on

their knowledge about the appropriate sizes of clouds. In our experiments, for Ensemble 1, the average

number of cloud patches in an image is m̄ = 5, 9, 15, 50; and for Ensemble 2, m̄ = 5, 8, 15, 45. The

highest granularity levels correspond to m̄ = 50 and m̄ = 45, respectively. As we will see, the results

obtained across a range of values of m̄ are highly consistent.

4.1 Visual and Quantitative Comparisons

At each granularity level, we obtained the MDM, BPM, and IM-RM aggregated images (also called

mean images) for the whole ensemble. For all the cloud simulation images we show, the pixel values

have been scaled to the maximum span from 0 to 255 (white). The real maximum cloud intensity values

for the images (including the original ensemble members) are all below 60. We scaled the values for the

clarity of illustration as the unscaled versions will appear quite dark.

For comparison, we show the pixel-wise average of the cloud simulations for each ensemble in Figure

4 (a). For brevity, we refer to the pixel-wise average as Simple Mean (SM) image which is mostly used

for integrating cloud simulations in existing practice. The mean images by GEM are shown in Figure

4 (b) for Ensemble 1 and (c) for Ensemble 2. The MDM, BPM, and IM-RM images are shown in the

first, second, and third rows respectively. When the barycenter support size increases, the MDM image

shows more details, but the MDM images at different granularity levels are consistent in the sense that

the positions and rough shapes of the clouds in the images are quite stable. Because the MDM images

are simulated using a mixture of Gaussian distributions, they have a “smoothed out” appearance, the
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texture not resembling a typical simulation. This is not the case with the IM-RM images since they are

the original images transformed by rigid motion. On the other hand, they are similar to the MDM images

in the overall shapes. Both the MDM and IM-RM images indicate clearly the shapes of clouds, while the

SM images only show rather smeared masses of cloud pixels. The BPM images are weighted average of

the original images and are more similar to the MDM images than the SM images are.

To evaluate the methods numerically, we computed the MAW distance between the mean image of

each scheme and every image in an ensemble. The average MAW distances within each ensemble are

shown in Figure 5 (a). Each curve in a plot corresponds to one method applied at different granularity

levels of the two-tier signature. As the MDM image is generated directly from a GMM, we use this

GMM as its image signature. For the aggregated images obtained by SM, BPM, or IM-RM, we applied

the same image signature extraction process as that applied to the individual ensemble images. In the

cloud segmentation step, at any granularity level, we set the Gaussian kernel bandwidth to the same value

used for the ensemble images. As shown in Figure 5 (a), for both ensembles, MDM achieves the lowest

average distance across all the granularity levels, while SM yields the largest average distance. When

the granularity level increases, the two-tier signature becomes closer to the pixel-wise representation of

the image. As a result, we observe that the range of the distances obtained by different methods reduces.

In a quantitative term, the “smearing” effect of simple pixel averaging is captured by the remarkable

drop in the peak cloud intensity in an image. As the positions of the peak value vary broadly in different

images, after simple pixel-wise averaging, the maximum intensity can decrease dramatically. This

problem is quite effectively avoided by our MDM and IM-RM methods. In Figure 5 (b), we show

the boxplots of the maximum cloud intensity for several groups of images. First, to create a common

ground for comparison, we obtained the boxplot for the maximum intensities of the original images

in each ensemble (labeled as “Original” in the figure). For the SM image, there is a single value for

each ensemble. For MDM, BPM, IM-FM respectively, the boxplot is for results obtained at the four

granularity levels. As IM-RM images are rotated and shifted versions of the most representative images

of each ensemble, the boxplot is closest to that of the original images. With MDM, the maximum

intensities are reduced by a small amount. The maximum intensity of the SM image is much lower

than the average of the original image, which is above 55.0 for both ensembles. For both ensembles,

the maximum intensity of SM is below 20.0, while the smallest such value from the original images is
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(a) SM (pixel-wise average) images for Ensemble 1 (left) and 2 (right)

m̄ = 5 m̄ = 9 m̄ = 15 m̄ = 50

(b) Ensemble 1: MDM (first row), BPM (second row), IM-RM (third row)

m̄ = 5 m̄ = 8 m̄ = 15 m̄ = 45

(c) Ensemble 2: MDM (first row), BPM (second row), IM-RM (third row)

Figure 4: Comparison of SM images and mean images by GEM for Ensemble 1 and 2 at four granularity
levels. The barycenter support size includes 5, 9, 15 and 50 for Ensemble 1 and 5, 8, 15 and 45 for
Ensemble 2.
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(a) Ensemble 1 (left) & 2 (right)

(b) Ensemble 1 (left) & 2 (right)

Figure 5: Quantitative comparison of mean images. (a): Average squared MAW distance between a
mean image and all the images in the ensemble. Results are obtained across four granularity levels.
For Ensemble 1, the average number of cloud patches across the granularity levels is 5, 9, 15, 50; for
ensemble 2, 5, 8, 15, 45. (b): Boxplots for the maximum cloud intensity in each image. The boxplots are
created for the following groups of images: all the members of the ensemble (“Original”), SM image for
the ensemble, MDM, BPM, IM-RM images obtained at the four granularity levels respectively.

(a) MDM for 3 clusters of Ensemble 1 (b) IM-RM for 3 clusters of Ensemble 1

(c) MDM for 3 clusters of Ensemble 2 (d) IM-RM for 3 clusters of Ensemble 2

Figure 6: D2-Clustering results for Ensemble 1 and 2 at the highest granularity level. The average
number of cloud patches for Ensemble 1 is 50 and that for Ensemble 2 is 45.
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around 21.0 for Ensemble 1 and 42.0 for Ensemble 2. Albeit better than SM, the boxplot of BPM also

differs significantly from that of the original images.

We compared the histograms of the cloud intensities in the mean images obtained by different

methods. We also computed the histogram for every original image and use the average histogram

across an ensemble as a benchmark (called “reference”). For both ensembles, the histograms show that

MDM and IM-RM yield results similar to the reference, while those of BPM and SM are quite different.

In Table 1, we report the L1 distance between the reference histogram and those of the mean images.

We also use the average distance between the reference histogram and that of each original image as a

yardstick since it reflects the intrinsic variation within the ensemble. Denote the reference distance by

Dref. The distances achieved by MDM and IM-RM are either slightly higher than Dref or considerably

lower, the latter occurring much more often. For Ensemble 1, with only one exception, the distances

by MDM or IM-RM are lower than half of Dref. The results by BPM are clearly worse than MDM and

IM-RM, but better than SM by a large margin.

Ensemble 1 Ensemble 2
Dref (Ave. of orig.) 0.258 0.107

SM 0.809 0.606

Ave. # cloud patches Ave. # cloud patches
Our methods 5 9 15 50 5 8 15 45

MDM 0.107 0.116 0.129 0.214 0.128 0.109 0.137 0.161
BPM 0.564 0.575 0.550 0.527 0.407 0.323 0.340 0.326

IM-RM 0.097 0.072 0.071 0.042 0.072 0.072 0.071 0.047

Table 1: Comparison of the L1 distance between the normalized histograms. For each ensemble, the
average histogram across the images in the ensemble is used as the reference histogram. We use Dref to
denote the average distance between the histogram of each ensemble member image and the reference.
It reflects the variation within an ensemble. For each of our methods, results are reported for the mean
images obtained at different levels of granularity (as reflected by the average number of cloud patches).

In summary, the most straightforward but least informative way of generating a mean image is by SM

(equal weights on the ensemble members). One of the drawbacks of SM is that it diminishes the potential

intensity (and thus the forecasted severe weather risk potential) of cloud patches, which vary widely in

position and intensity among ensemble members. BPM has similar limitations although it improves SM

by using unequal weights on different ensemble members. MDM, however, defines an average from a
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new angle. Instead of operating at the pixel-level, it computes the averages over attributes of segmented

clouds. As demonstrated by the experiments, this strategy enables MDM to achieve high fidelity in

terms of the cloud intensity distribution as well as the MAW distance. On the other hand, because the

MDM image is not generated by a weather forecasting model but by object-level synthesis, it loses the

sharpness of clouds. Being a true ensemble member (up to a rigid motion), the IM-RM image preserves

the cloud sharpness. Although BPM is not the best by any of the quantitative measures, it is kin to the

SM method, which is currently most used. We thus find it interesting to study. If a user is interested in

the most representative scenario of the ensemble presented as a real individual forecast, IM-RM is most

suitable. But if he or she is interested in the average object-level characteristics of the ensemble, MDM

provides a more direct visualization.

4.2 Assessment of Uncertainty and Computational Efficiency

For the BPM images, we estimated the posterior variance of each pixel value σ̂2
BP (see Section 3.3). We

then computed the ratio

√
σ̂2

BP

‖IBPM‖2/(nv × nh)
. The results across four granularity levels are provided

in Table 2. When we computed the IM-RM image for an ensemble, we obtained the rotation angle and

translation for each image. Take Ensemble 1 as an example. The rotation angle varies in a narrow range

of around −15◦ to 15◦ with the highest percentages of images having near zero rotation. The average

rotation angle is 0.55◦ with standard deviation 6.36◦. The translation distance ranges from 0 to 80 pixels

(the image size is 131× 158). The average translation is 25.36 with standard deviation 14.65.

Ensemble 1 Ensemble 2
m̄ (Ave. # cloud patches) 5 9 15 50 5 8 15 45√

σ̂2
BP

‖IBPM‖2/(nv×nh)
(%) 15.4 15.3 15.0 14.5 19.7 17.6 18.0 17.6

Table 2: The estimated posterior variance for the BPM images across four granularity levels.

The vast majority of the computational time for generating the aggregated simulations is on

computing the Wasserstein barycenters. We report the running time in Table 3. The running time is

based on the Matlab implementation of the algorithm of Ye et al. (2017) on a single core Mac CPU of

3.5GHz. The computation time increases rapidly when the average support size of the signatures grows.

The support size of the barycenter is set to be the average support size of the image signatures. When

m̄ = 5, it takes about 0.7 seconds, while at m̄ = 50 for Ensemble 1, it takes about 348 seconds. The
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package we used can run on multiple cores to dramatically reduce the computation time. The reason for

not experimenting with higher values of m̄ is not that the algorithm of Ye et al. (2017) is too slow but that

the cloud patches become overly localized when the granularity level is too high. In fact, the algorithm

of Ye et al. (2017) is the state-of-the-art in terms of speed (linear in data size). Detailed discussion on

the complexity of the algorithm is referred to that paper.

Ensemble 1 Ensemble 2
m̄ 5 9 15 50 5 8 15 45

Time (sec.) 0.77 1.44 3.56 348.13 0.72 1.29 5.53 177.29

Table 3: The running time of generating the Wasserstein barycenters versus the average support size of
the distributions.

4.3 Clustering based on Wasserstein Distance

We have so far aggregated each ensemble to a single mean image. It is interesting to explore subgroups

within the ensemble. We again applied the fast algorithm of Ye et al. (2017) to cluster the first-tier

signatures into 3 groups. For each subgroup, we computed the MDM, BPM, and IM-RM images. The

results obtained at the highest granularity level are shown in Figure 6. Due to lack of space, only MDM

and IM-RM images are displayed. We can observe rather distinct patterns of clouds in the aggregated

images for the three subgroups in each ensemble. For Ensemble 1, the three clusters contain 9, 20 and

12 images, respectively, and for Ensemble 2, they contain 13, 20 and 8 images, respectively. If we

compare the results in Figure 4 and Figure 6, we see that the aggregated mean for the entire ensemble

(last column of Figure 4 (b) and (c)) is a reasonable combination of the three subgroups (Figure 6). The

grouping generated by D2-clustering helps us organize the many simulations in one ensemble so that we

can more easily see the dominant differences in the cloud patterns.

5 Conclusions and Future Work

We have developed the GEM toolkit for summarizing an ensemble of simulated cloud images in

order to solve the imperative issue of information overload faced by meteorologists. Viewed from a

typical statistical perspective, our method can be considered as a new way of defining the mean of

physical signals, e.g., images, such that the geometric nature of the signals can be preserved. To obtain
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geometrically meaningful average simulations, we propose to represent cloud maps by a two-tier data

model and exploit the Wasserstein distance in clustering and centroid computation.

As aforementioned, the GEM system requires a given granularity level to generate the mean images.

Due to the more or less subjective nature of visualization problems in general, it is difficult to choose the

best granularity level according to any numerical measure. Our results, as shown by the example images

and numerical evaluation, are stable over the different levels. We anticipate that in its deployment, the

system will be calibrated by users with extra domain information.

One interesting future direction is to take into account the covariance matrix of a Gaussian component

during the optimization of the barycenter. Specifically, recall that the two-tier signature of the lth image

is essentially a GMMM(l) = {P(l),G(l)}, where P(l) is the discrete distribution over the locations and

G(l) contains the covariance matrices that capture the shapes of cloud patches. Instead of solving the

barycenter according to Eq. (2), an alternative approach would be to solve a generalized barycenter by

min
Q

N∑
l=1

W̃ 2(Q,M(l)), where W̃ is the MAW distance defined in Eq. (4) and Q is a GMM with a given

number of components. This new optimization formulation is appealing as it treats cloud location and

shape in a more unified way. On the other hand, to solve the new barycenter problem, we must extend

the algorithm of Ye et al. (2017). Whether the new formulation achieves better results and how much the

computational cost is need to be examined through experiments.

6 Supplementary Materials

Matlab/C-package: Matlab and C codes for the methods to create mean cloud images in the GEM

system. The package also contains the image datasets used in the experiments presented in the

article. (gem.tar.gz, unpacked by gunzip followed with tar -xvf)
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projections for regularized transportation problems. SIAM J. Sci. Comp. (SJSC). 37(2) A1111–A1138.

CARLIER, G., CHERNOZHUKOV, V., and GALICHON, A. (2016). Vector quantile regression: An

optimal transport approach. The Annals of Statistics. 44(3) 1165–1192.

CHEN, Y., YE, J., and LI, J. (2016). A distance for HMMs based on aggregated Wasserstein metric and

state registration. Proc. ECCV. 451–466.

CUTURI, M. and DOUCET, A. (2014). Fast computation of Wasserstein barycenters. Proc. Int. Conf.

Machine Learning (ICML) 685-693.

DON, P., EVANS, J. L., CHIAROMONTE, F., and KOWALESKI, A. M. (2016). Mixture-Based Path

Clustering for Synthesis of ECMWF Ensemble Forecasts of Tropical Cyclone Evolution. Mon. Wea.

Rev. 144 3301-3320.

GIVENS, C. R. and SHORTT, R. M. (1984). A class of Wasserstein metrics for probability distributions.

Michigan Math Journal. 31(2) 231–240.

KALNAY, E. (2002). Atmospheric Modeling, Data Assimilation and Predictability. 1st Edition,

Cambridge University Press.

LEE, H. and LI, J. (2012). Variable selection for clustering by separability based on ridgelines. Journal

of Computational and Graphical Statistics. 21(2) 315–337.

LEITH, C. E. (1974). Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev. 102 409-418.

LI, J., RAY, S., and LINDSAY, B. G. (2007). A nonparametric statistical approach to clustering via mode

identification. Journal of Machine Learning Research. 8(8) 1687–1723.

28



LI, C., SRIVASTAVA, S., and DUNSON, D. B. (2016). Simple, scalable and accurate posterior interval

estimation. Biometrika. 104(3) 665-680.

LI, J. and WANG, J. Z. (2008). Real-time computerized annotation of pictures. IEEE Transactions on

Pattern Analysis and Machine Intelligence. 30(6) 985–1002.

MELHAUSER, C. and ZHANG, F. (2012). Practical and intrinsic predictability of Severe and Convective

Weather at the mesoscales. Journal of the Atmospheric Sciences. 69 3350–3371.

MELNYKOV, V. and MAITRA, R. (2010). Finite mixture models and model-based clustering. Statistics

Surveys. 4 80–116.

MENG, Z. and ZHANG, F. (2008). Test of an ensemble Kalman filter for mesoscale and regional-scale

data assimilation. Part IV: Comparison with 3DVar in a month-long experiment. Mon. Wea. Rev. 136

3671-3682.

MINSKER, S., SRIVASTAVA, S., LIN, L., and DUNSON, D. B. (2014). Robust and scalable Bayes via a

median of subset posterior measures. arXiv preprint arXiv:1403.2660v3.

MOLTENI, F., BUIZZA, R., PALMER, T. N., and PETROLIAGIS, T. (1996). The ECMWF ensemble

prediction system: Methodology and validation. Quarterly J. Roy. Meteor. Soc. 122 73–119.

NATIONAL RESEARCH COUNCIL; DIVISION ON EARTH AND LIFE STUDIES; BOARD ON ATMO-

SPHERIC SCIENCES AND CLIMATE; COMMITTEE ON ESTIMATING AND COMMUNICATING UN-

CERTAINTY IN WEATHER AND CLIMATE FORECASTS (2006). Completing the Forecast: Charac-

terizing and Communicating Uncertainty for Better Decisions Using Weather and Climate Forecasts.

National Academies Press. http://ftp.emc.ncep.noaa.gov/gc wmb/yzhu/NRC report/NRC.pdf.

RACHEV, S.-T. (1985). The Monge-Kantorovich mass transference problem and its stochastic

applications. Theory of Probability & Its Applications 29(4) 647–676.

RABIN, J., PEYRÉ, G., DELON, J., BERNOT, M. (2011). Wasserstein barycenter and its application to

texture mixing. Scale Space and Variational Methods in Computer Vision 435-446.

RAFTERY, A. E., GNEITING, T., BALABDAOUI, F., and POLAKOWSKI, M. (2005). Using Bayesian

model averaging to calibrate forecast ensembles. Mon. Wea. Rev.. 133 1155–1174.

29



RAY, S. and PYNE, S. (2012). A computational framework to emulate the human perspective in flow

cytometric data analysis. PloS one. 7(5) e35693.

SKAMAROCK, W. C., KLEMP, J. B., DUDHIA, J., GILL, D. O., BARKER, D. M., WANG, W., and

POWERS, J. G. (2005). A description of the advanced research WRF version 2. NCAR Tech. Note

NCAR/TN-4681STR 88 pp.

SIVILLO, J. K., AHLQUIST, J. E., and TOTH, Z. (1997). An ensemble forecasting primer. Weather and

Forecasting. 12(4) 809–818.
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