Asymptotic Performance of Vector Quantizers with a Perceptual Distortion Measure

Jia Li, Navin Chaddha, and R.M. Gray

E-mail: jiali@isl.stanford.edu, navin@vxtreme.com, rmgray@stanford.edu
Outline

Source mismatch

Examples

Asymptotic analysis
- Variable rate coding
- Fixed rate coding

Distortion

Bounds for asymptotic optimal performance with a perceptual

Preliminaries
Motivation

- What is the performance loss?
- Perceptual distortion measure has to be estimated in real life.
- Source mismatch

Standards for image quality become more demanding.
- MSE does not correlate well with subjective quality
- Probability density function has to be estimated in real life.

Jia Li / Stanford University
VectorQuantizer

\[
\forall x \in S_i \quad \mathcal{Y} = (x)^\mathcal{Q}
\]

A partition \(\{ S_i \}_{i=1}^{\mathcal{N}} \) of \(\mathcal{X} \) •

\(\{ S_i \}_{i=1}^{\mathcal{N}} \)

Codebook \(\mathcal{C} \) •

\(\mathcal{X} \subset \mathbb{R}^k \) Euclidean space.

Quantize vector \(x \in \mathbb{R}^k \) to \(x_i \in \mathcal{Y} \), \(i=1, \ldots, \mathcal{N} \) •

Stanford University
is positive definite almost everywhere.

\[\kappa = x \begin{bmatrix} \frac{\partial^2 u}{\partial x^2} & \frac{\partial^2 u}{\partial x \partial y} \\ \frac{\partial^2 u}{\partial y \partial x} & \frac{\partial^2 u}{\partial y^2} \end{bmatrix} I = (\kappa)^{uw} B \]

with the \(i \), \(m \) element with the \(m \), \(n \) element as a \(l \) by \(l \) dimensional matrix almost everywhere.

\[\kappa = x \begin{bmatrix} \frac{\partial^2 u}{\partial x^2} & \frac{\partial^2 u}{\partial x \partial y} \\ \frac{\partial^2 u}{\partial y \partial x} & \frac{\partial^2 u}{\partial y^2} \end{bmatrix} I \]

has continuous partial derivatives of third order almost everywhere.

\[\kappa = x \begin{bmatrix} \frac{\partial^2 u}{\partial x^2} & \frac{\partial^2 u}{\partial x \partial y} \\ \frac{\partial^2 u}{\partial y \partial x} & \frac{\partial^2 u}{\partial y^2} \end{bmatrix} I \]

\[\kappa \triangleq \begin{cases} 0 & \text{if} \ k \leq 0 \\ 1 & \text{if} \ k > 0 \end{cases} \]

Regularity constraints on \(\kappa \)

General form of distortion is denoted by function \((\kappa, x) \)
Why perceptually meaningful?

Examples:

More examples can be found in:

\[(\Lambda - x)(x)B_{\lambda}(\Lambda - x)\text{ and } (\Lambda - x)(x)B_{\lambda}(\Lambda - x)\]

- Output and input weighted quadratic distortion.
- Output and input weighted quadratic distortion.
- Parameters of the LPC model for speech.
- A low log spectral distortion (LSD) for the quantization of

Stanford University
Approximation for $L(x, y)$.

Given a code book $B = \{ N, \ldots, N \}$ denote $B_i = 1$.

Assumptions for approximation:
- Quantizer is high rate, all S_i small volume and N large.
- As a result of the above assumptions, $(\Lambda, x) \approx (\Lambda, x)^T$ can be approximated by:

$$ (\Lambda - x)B_i(\Lambda - x) \approx (\Lambda, x)^T $$

Assumptions for approximation:

Approximation for $L(x, y)$
The volume of the unit sphere in the k-dimensional space for the quadratic norm is:

\[
V_i = \frac{\det B_i}{C_k^{k/2}} = \frac{\Lambda}{2^{k/2}}
\]

where \(C_k = \frac{1}{2^{k/2}} \) is the volume of the k-dimensional Euclidean norm.

The quadratic norm \(\| \cdot \|_{\mathcal{B}} \) satisfies:

\[
\mathcal{B}_i x = \| x \|
\]

The volume of the unit sphere in the k-dimensional space is:

\[
V_i = \frac{\det B_i}{C_k^{k/2}} = \frac{\Lambda}{2^{k/2}}
\]
\[
(S)\Lambda = \Lambda_{\|}(S)\mathcal{U} = ((S)\mathcal{L})\Lambda
\]
\[
\{(S)\mathcal{U} = \| \Lambda - x \| : x\} = \{(S)\mathcal{U} \supset (\Lambda - x)^2B_4(\Lambda - x)^\wedge : x\} = (S)\mathcal{L}
\]
\[
\text{The effective region of } (S)\mathcal{L} \text{ centered at } \Lambda
\]
\[
\frac{1}{\frac{1}{4}(\Lambda/(S)\Lambda)} = \frac{1}{(S)\mathcal{U}}
\]
\[
\text{The effective radius of } (S)\mathcal{U} \text{ of } (S)\Lambda
\]
\[M_i = \begin{cases} \frac{1}{c_k} w_i t, \\ \frac{1}{1-c_k} v_i = \frac{1}{1-c_k} w_i d, \end{cases} \]

For mathematical convenience:

\[\Delta p \left(\mathbb{W} \frac{y_i}{\lambda} \right)_i \frac{\mathbb{W} \frac{y_i}{\lambda}}{\lambda} \int \frac{y_i}{1} = (a)^M \]

Generalized Gish-Pierce Function
\[xp(\mathcal{X} - x) \mathcal{B}_q(\mathcal{X} - x) \int ((\mathcal{S})_\Lambda \mathcal{I}^I) \sum_{N} \approx D \]

\[xp(x) \mathcal{D} \int = \mathcal{D} \]

Assuming \(p(x) \) is sufficiently smoothed, for high rate quantizer \(Q \) denote \(P_i = R(S_i \mathcal{T}(x)) \).

\[\cdot \quad xp(\mathcal{X} \mathcal{T}(x)) \mathcal{D} \int \sum_{N} = \]

\[xp((x) \mathcal{D}(x)) \mathcal{T}(x) \mathcal{D} \int = ((x) \mathcal{D}(x)) \mathcal{T} \mathcal{E} = D \]

The performance is measured by the average distortion.

The rate is measured by \(\log N \) where \(N \) is the total number of codewords.

Fixed Rate Coding
Lower Bounds for FRC

A crucial inequality:

\[
\cdot \left(\frac{1}{t} (S') \Lambda \right) \frac{1}{N} \sum_{N} W \supseteq \mathcal{D}
\]

\[
\cdot \left(\frac{1}{t} (S') \Lambda \right) W (S') \Lambda = \chi p (\lambda - x) \mathcal{B}_i (\lambda - x) \int
\]

\[
\chi p (\lambda - x) \mathcal{B}_i (\lambda - x) \int \supseteq \chi p (\lambda - x) \mathcal{B}_i (\lambda - x) \int
\]

Lower bound:

Stanford University
Jia Li
Following Gersho's assumption, we assume that as $N \to \infty$, there is a limiting density $(x) N$ (quantization point density function).

Using Gersho's assumption, we assume that as $N \to \infty$, there is a limiting density $(x) N$ (quantization point density function).

\[\Lambda_{-1}((x) N) \approx (x) N - \text{has unit integral} \]

\[N \to \infty \]

\[\forall N \in \mathbb{R}, x \in S \quad \exists \lim_{N \to \infty} ((x) N) = (x) N \]
Lower Bounds for FRC

Using limiting density function

\[
\frac{xp \frac{z+y}{y} [\frac{y}{x} ((x)G_\gamma \text{det})(x)] \int \frac{z+y}{y} [((x)G_\gamma \text{det})(x)]}{z+y} = (x)^{d_0} \gamma \text{ where}
\]

\[
xp(x)d_{\frac{y}{z}}[((x)G_\gamma \text{det})]\frac{y}{z} - (x)^{d_0} \gamma \int \cdot \frac{y}{z} - N \cdot \frac{y}{z} C \frac{z+y}{y} = (d_0 \gamma) D
\]

The lower bound for the asymptotic distortion is

\[
\cdot \left(\frac{y}{z} - ((\gamma N))^{d_0} \gamma \sum_{N} \int \right) \leq D
\]

Using limiting density function

\[
(x)^{d_0} \gamma
\]
In conclusion:

\[\text{Approximation holds } (\vartheta^d \vartheta)^T \vartheta \approx (\vartheta^d \vartheta) \vartheta \]

\[
\left[x p_{\frac{\gamma}{\gamma+1}} \left[\frac{1}{\gamma} ((x) (x)^T) d \right] \int \right] \cdot \frac{\gamma}{\gamma+1} \frac{1}{\gamma} - N \frac{\gamma}{\gamma+1} \frac{1}{\gamma} \leq (\vartheta^d \vartheta)^T \vartheta \leq (\vartheta^d \vartheta) \vartheta
\]
Question: For a given rate, what is the asymptotic average distortion?

The rate is the entropy of the encoded source.

Variable Rate Coding
Recall that the lower bound is:

\[
\cdot \quad xP(x) \int_{-\infty}^{\infty} \left[(x)^{i \cdot d \cdot O} N \right] \int \\
\times \left[xP(x) d_{\frac{1}{T}} \left[(x) B \right] \right] \frac{2 + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}} = (x) f \quad \text{defining
B \text{ by defining}} \quad B: \text{to simplify}
\]

Recall that the lower bound is:

\[
\text{Lower Bound for VRC}
\]
The entropy of the encoded source is approximately

\[\text{opt} \quad \mathcal{H}(x) = \min_{\tilde{x}} \mathcal{H}(\tilde{x}) \]

i.e.,

\[\min_{\tilde{x}} \mathcal{H}(\tilde{x}) \]

\((\text{opt} \circ \mathcal{H}) \) and

\[\min_{\tilde{x}} \mathcal{H}(\tilde{x}) \]

where \(C \) is a constant.

\[C \geq \mathcal{H}(x) \delta \log \left(\frac{\mathcal{H}(x)}{I} \right) + (d) \eta \]

Given the constant \(\delta \).

Reduce to optimization problem as follows:

\[(x) \mathcal{H} = (x) \delta \]

Denote

\[\left[(x) \mathcal{H} \right] \delta \log \left(\frac{\mathcal{H}(x)}{x} \right) \quad \mathcal{H} - (d) \eta \approx \mathcal{O} \]

The entropy of the encoded source is approximately

\[(x) \mathcal{H} \text{ opt} \]

Stanford University
By Jensen’s inequality, the optimal limiting density is

\[
(x)_{\text{opt}} \subset (\partial') \subset \partial \\
\text{The lower bound is} \\
\text{Obtain lower bound and} \\
\text{Stanford University}
\]
\[
\begin{align*}
\mathbf{y}^\top \mathbf{\Lambda} \mathbf{y} & \propto (\mathbf{\Lambda})^y \\
\mathbf{y}^\top \mathbf{\Lambda} \mathbf{y} & = ((\mathbf{\Lambda}) \mathbf{B})^\text{det}
\end{align*}
\]

Hence

\[
\begin{align*}
\frac{z^\top \mathbf{\Lambda} \frac{z}{1} = (\mathbf{\Lambda})^{u \cdot w} & \quad u = w \\
0 = (\mathbf{\Lambda})^{u \cdot w} & \quad u \neq w
\end{align*}
\]

\[
\mathbf{I} \frac{z - \mathbf{x}}{1} = (\mathbf{x}) \mathbf{M} \quad \text{where} \quad (\mathbf{\Lambda} - \mathbf{x})(\mathbf{x}) \mathbf{M}_1(\mathbf{\Lambda} - \mathbf{x}) = (\mathbf{\Lambda}, \mathbf{x})^T
\]

\begin{quote}
Example
\end{quote}
performance due to source mismatch.

Apply previous results to quantify the possible change in

\[f(x)p(x) \]

As shown before, for fixed rate coding, \(f(x)p(x) \) depends on \(d(x) \).

In real life, \(f(x) \) must be estimated.

Source Mismatch
determining the distortion.

All the sub-vectors \mathbf{x} play an equal and independent role in

\[
\left(\begin{array}{cccc}
\mathbf{x}^{(1)} & \cdots & \mathbf{x}^{(k)} \\
\mathbf{x}^{(1)} & \cdots & \mathbf{x}^{(k)}
\end{array} \right) = \mathbf{x}' \quad \text{where, } \left(\begin{array}{c}
((\mathbf{x})\mathcal{B}) \\
((\mathbf{x})\mathcal{B})
\end{array} \right) \prod_{i=1}^{k} \det = ((\mathbf{x})\mathcal{B})', \text{ and vectors, }

\text{where } \mathbf{x}^{(i)} \text{'s are i.i.d. random vectors,}

\left(\begin{array}{cccc}
\mathbf{x}^{(1)} & \cdots & \mathbf{x}^{(k)} \\
\mathbf{x}^{(1)} & \cdots & \mathbf{x}^{(k)}
\end{array} \right) = \mathbf{x} \quad \text{where, } \left(\begin{array}{c}
((\mathbf{x})\mathcal{B}) \\
((\mathbf{x})\mathcal{B})
\end{array} \right) \prod_{i=1}^{k} \det \text{ is easily generalized to } \mathbf{x} \text{ and random variables.}

\text{Vector } \mathbf{x} \text{ 's are i.i.d. random variables.

Basic Assumptions}
Analyzetheasymptoticcasewhenvectordimension

\[k \approx 1 \]

Thelossofperformanceismeasuredbytheincreaseof
distortionindB, i.e., \(10 \log_{10} \frac{D}{D_{opt}} \).

The loss of performance is measured by the increase of
distortion in dB, i.e., \(10 \log_{10} \frac{D}{D_{opt}} \).

The loss of performance is measured by the increase of

distortion in dB, i.e., \(10 \log_{10} \frac{D}{D_{opt}} \).

\[\left(\frac{d_{opt}}{D} \right) \frac{d_{opt}}{D} \]

Analyzetheasymptoticcasewhenvectordimension

\(k \approx \infty \).
LossofPerformance

Byusingestimatedpdf/pd/x, theoptimalpd/x/x = \((\vec{x})_{\opt} \)

where

\[\prod_{\gamma} \left((\vec{x})_{\opt} \right)^{\frac{1}{\gamma}} = (\vec{x})_{\opt} \]

Asaresultof

\[(\vec{x})_{\opt} \prod_{\gamma} \left((\vec{x})_{\opt} \right)^{\frac{1}{\gamma}} = (\vec{x})_{\opt} \]

\((\vec{x})_{\opt} \prod_{\gamma} \left((\vec{x})_{\opt} \right)^{\frac{1}{\gamma}} = (\vec{x})_{\opt} \)

\((\vec{x})_{\opt} \prod_{\gamma} \left((\vec{x})_{\opt} \right)^{\frac{1}{\gamma}} = (\vec{x})_{\opt} \)

\((\vec{x})_{\opt} \prod_{\gamma} \left((\vec{x})_{\opt} \right)^{\frac{1}{\gamma}} = (\vec{x})_{\opt} \)

\((\vec{x})_{\opt} \prod_{\gamma} \left((\vec{x})_{\opt} \right)^{\frac{1}{\gamma}} = (\vec{x})_{\opt} \)

Byusingestimatedpdfpd/x, theoptimalpd/x is

\[\text{Loss of Performance} \]
The limits for the three terms will be derived.

\[
\begin{align*}
\text{Continued}
\end{align*}
\]
Under conditions stated later, the following three limits exist:
are continuous functions, the above four conditions hold. If the domain of x is a bounded closed set, and p and q are continuous functions, the above four conditions hold.

1. \[\int_{\mathcal{A}} \frac{(x\mathcal{B} - (x)\mathcal{d})}{\mathcal{S}} \, d\mathcal{E} \]

2. \[\int_{\mathcal{A}} \frac{(x\mathcal{B} - (x)\mathcal{d})}{\mathcal{S}} \, d\mathcal{E} \]

3. \[\int_{\mathcal{A}} \frac{(x\mathcal{B} - (x)\mathcal{d})}{\mathcal{S}} \, d\mathcal{E} \]

4. \[\int_{\mathcal{A}} \frac{(x\mathcal{B} - (x)\mathcal{d})}{\mathcal{S}} \, d\mathcal{E} \]
\[
\infty \leftarrow \infty
\]
which means the effect of \(0\) is washed out when \(k\) is.

\[I \text{ is interesting to notice the limit loss is independent of } B.\]

An example of the relative entropy being an important distance measure on probability density functions.

\[
\mathcal{D}(\pi(x) \| \pi(x)) \approx \frac{1}{\lambda} \log \frac{D}{Q}
\]

The loss in \(DB \) when \(k \) is:

(Final Result)
References

