
Agglomerative Connectivity Constrained Clustering for Image Segmentation

Jia Li∗

Abstract

We consider the problem of clustering under the constraint that data points in the same cluster

are connected according to a pre-existed graph. This constraint can be efficiently addressed by an

agglomerative clustering approach, which we exploit to construct a new fully automatic segmentation

algorithm for color photographs. For image segmentation, if the pixel grid with eight neighbor

connectivity is imposed as the graph, each group of pixels generated by this clustering method is

ensured to be a geometrically connected region in the image,a desirable trait for many subsequent

operations. To achieve scalability for images with large sizes, the segmentation algorithm combines the

top-down k-means clustering with the bottom-up agglomerative clustering method. We also find that it is

advantageous to conduct clustering at multiple stages through which the similarity measure is adjusted.

Experimental results with comparison to other widely used and state-of-the-art segmentation methods

show that the new algorithm achieves higher accuracy at muchfaster speed. A software package is

provided for public access.

Keywords: connectivity constrained clustering, agglomerative clustering, image segmentation, k-means

1 Introduction

Research efforts have been devoted to developing clustering techniques for several decades. Motivated by

problems in different domains, researchers in multiple disciplines including statistics, computer science, and

electrical engineering, have eventually come to face the common abstracted problem of clustering data, and

have fairly independently invented various methods, whichshare principles but differ in treatment. We point

readers to [14, 6, 10, 15] as excellent references to a vast body of literature on clustering. With the explosion

∗Jia Li is an Associate Professor in the Department of Statistics at the Pennsylvania State University. Email: jiali@stat.psu.edu

1

of data in the current era of information technology as well as the much increased complexity of data, new

challenges for clustering continue to emerge in a wide rangeof applications. Despite the long history of

studies on clustering, the topic has sustained interests from researchers in traditional disciplines, and has

attracted interests from those in nascent fields, e.g., computational biology.

1.1 Main Approaches to Clustering

Clustering methods can be categorized in several ways. We can contrast them as optimization-based

versus model-based. In the former approaches, usually an optimization criterion is proposed to reflect

the belief about what constitutes a good clustering result.Then, numerical methods are derived to solve the

optimization problem. In model-based approaches, each cluster is assumed to follow a certain parameterized

distribution [19, 2, 8] or a mixture of such distributions [16]. The clustering problem is then converted into

statistical model estimation. When the mixture model is involved, the EM algorithm [5] is most commonly

used to estimate the parameters. In terms of the way clustersare formed, methods can be divided into

top-down versus bottom-up, with a hybrid proposed by [4]. Inthe bottom-up, also called agglomerative,

approaches, existing clusters are merged recursively, onepair at a time, starting from clusters containing

a single object. Only pairwise distances between objects are needed. There is usually a distance updating

scheme that generates distances between clusters when a newcluster is formed by combining an existing

pair. Examples of the distance updating scheme include single, complete, average linkage, and Ward’s

clustering, which greedily minimizes the total variation.

1.2 Clustering with Connectivity Constraints

In some applications, the formed clusters are required to meet certain conditions in addition to the generic

requirement that entities within the same cluster are as similar as possible according to a given measure. For

instance, in image analysis, clustering is often applied topixel-level feature vectors such as colors to separate

pixels in an image into groups [15, 17]. Segmentation of the image is achieved by taking every group of

pixels as one segmented region. The purpose of segmentationoften is to build a rough correspondence

between segmented regions and physical objects captured inthe image. This decomposition of an image into

objects facilitates many subsequent analysis, for instance, retrieval and the prediction of semantics [28, 18].

2

A usual clustering procedure, however, only ensures that pixels in the same cluster are close in the feature

vector space. In the spatial plane, the pixels may not be connected geometrically. It is heuristically irrational

that several fragmented patches form one object. One would naturally prefer to have each segmented region

be spatially connected. There is no obvious way to guaranteethis. An ad-hoc method often used is to include

the spatial coordinates of pixels as features in clustering, with several issues lingering though. First, it is

unclear what is the best practice to scale the coordinates with respect to other features such as color. Second,

even when the coordinates are included as features, there isno guarantee that pixels in each final cluster are

all connected, although without doubt, they tend to be spatially close.

We thus pose the following problem. Suppose the entities to be clustered are nodes on a graph.

Independently from the graph, a measure of similarity is given to any pair of entities. We want to cluster the

entities based on the similarity and in the mean time ensure that entities in the same cluster are connected

according to the graph. We call this problemconnectivity constrained clustering, and study the application

to fully automatic segmentation of color images. Due to the great challenge of image segmentation, a

simple plug-in of the connectivity constrained clusteringmethod is insufficient. Instead, we have to treat

the clustering method as a design element for creating the overall segmentation system. Specifically, it is

combined with other clustering methods, and is conducted through several stages with an adaptive similarity

measure. The integrated algorithm achieves both fast speedand high accuracy.

We point out that the graph in our setup serves as a connectivity constraint and is irrelevant to the

similarity measure, a role completely different from that of graph-based clustering methods [29, 25], in

which the weighted edges of the graph record values of similarity. Readers can also regard that there

are two graphs in the present setting: one given by the similarity between objects that any clustering

algorithm employs and is computed from the data and one imposed externally that takes into consideration

of neighborhood information.

A related topic to our proposed problem is clustering with side information [27, 30]. There, instead of a

graph constraint, pre-given conditions on the similarity of some pairs of points are available. For instance,

some pairs are labeled “similar” and some “dissimilar”. Theemphasis is on learning a distance metric

that is consistent as much as possible with those conditions. The graph constraint we consider here differs

intrinsically from a set of pairwise relationships becauseconnectivity can occur through multiple steps, and

3

hence the satisfaction of the constraint depends on all the entities put in the same cluster. Moreover, as a

constraint, the connectivity of each cluster is mandatory,while side information is more for consulting and

can be approximated. We should also note that requiring eachsegmented region be spatially connected may

not be proper for images in some special domain. For instance, when segmenting microarray images into

foreground and background, the foreground can be disconnected spots in a noisy image [22, 23].

1.3 Related Work

Connectivity constrained clustering, also referred to as contiguity-constrained clustering, has been

investigated and used in several application areas (see survey [21]). For maximum split clustering with

connectivity constraints expressed by a tree graph, Hansenet al.[12] provides an exact algorithm with

quadratic complexity in the size of the data set. In the same paper, theoretical results are also given about

the computational complexity of an exact algorithm for constraints expressed by a general graph. However,

to the best of our knowledge, the agglomerative connectivity constrained clustering in its general form and

allowing different linkage schemes has not been used for fully automatic segmentation of color photographs.

Recently, the agglomerative connectivity constrained clustering with average linkage was extended

in [20] by defining a dissimilarity between clusters that depends only on dissimilarity between connected

data points in the clusters. The paper focuses on the clustering algorithm itself and treats superficially the

application to image segmentation. Only one small area of a single MRI grayscale image is shown as an

example; and there is no numerical evaluation or comparisonwith other methods. The dissimilarity between

pixels is simply the difference in grayscale, which is knownto be too weak for color pictures. Moreover,

the dissimilarity between two regions depends only on pixels along the boundary. For general-purpose

photographs, this definition of dissimilarity is highly prone to blurred edges that often exist in a photo

because of the limited depth of view as well as limitation in resolution. As is shown by some state-of-the-art

algorithms [25, 1] and the current work, to achieve good segmentation, much more sophisticated measures

are needed for dissimilarity between regions.

In [26], a graph partitioning based clustering method with connectivity constrains is applied to semi-

automatic segmentation of images into foreground and background. A user is required to specify which

pixels have to be connected with the main object, aka, foreground (assuming a first step segmentation has

4

acquired most of the main object). In addition, the connectivity constraints tackled in that work, different

from ours, are meaningful only under the setup of manually assisted segmentation. Although the kind of

connectivity constraints we consider here is brought up in [26], it is said to be too difficult for developing

heuristic algorithms and is not further studied.

Automatic image segmentation has been extensively researched on (see [13, 3, 9, 24]). We mention in

particular the work of Shi and Malik [25] and that of Arbeláez et al. [1], both of which use spectral graph

partitioning. The former algorithm is one of the most widelyused methods. The latter, developed recently

by the same research group, is targeted to address limitations of the former and is shown to achieve more

accurate segmentation. We thus compare our method with these two methods because they are popular and

represent the state-of-the-art.

The rest of the paper is organized as follows. In Section 2, the connectivity constrained clustering

problem is formulated and an agglomerative clustering algorithm is proposed. Section 3 is on the application

of the clustering algorithm to image segmentation. Due to the unique challenges of image segmentation, the

application is not straightforward. The clustering algorithm serves as a component of a more comprehensive

design. In Section 4, we illustrate the steps of the segmentation algorithm and compare results of the

new algorithm with those of existing methods. We conclude and discuss future work in Section 5. In

the appendices, a key property of the clustering algorithm is proved and details on distance updating are

provided.

2 Agglomerative Connectivity Constrained Clustering

Before formulating connectivity constrained clustering,let us provide several graph-related definitions.

1. A graphG is a collection of nodes{V1, ..., Vn} and edges connecting pairs of nodes(Vi, Vj).

2. Two nodesVi andVj are calledneighborsif the edge(Vi, Vj) exists inG.

3. A path betweenVi andVj is a sequence of edges(Vi, Vt1), (Vt1 , Vt2), (Vt2 , Vt3), ..., (Vtk−1
, Vtk),

(Vtk , Vj) which are all included inG.

4. A graphG is connectedif a path exists inG between allVi andVj, i 6= j, whereVi andVj are nodes

in G.

5

5. A subgraphG′ of G contains a subset of the nodes{Vi1 , Vi2 , ..., Vik} and inherits any edge(Vij , Vij′
),

1 ≤ j, j′ ≤ k, that exists inG. The subgraph ofG generated from a subset of the nodes

C = {Vi1 , Vi2 , ..., Vik} is denoted byG(C).

6. If (Vi, Vj) exists inG, we write(Vi, Vj) ∈ G.

The clustering problem in consideration is as follows. A setof objects{x1, x2, ..., xn} are to be grouped

into multiple categories. A symmetric pairwise distanceD(xi, xj) is given for everyi 6= j (by default

D(xi, xi) = 0). A graphG with {x1, x2, ..., xn} as nodes is specified. It is assumed thatG is connected.

Following the generally accepted heuristics about clustering, we aim at dividing thexi’s into groups such that

the within group distances between objects are small and thebetween group distances are large. Moreover,

we require that the subgraph generated fromxi’s in any cluster is connected. SupposeK clusters are formed,

each denoted byCk, k = 1, 2, ...,K. ThenG(Ck) is connected for anyk.

The agglomerative clustering approach attempts to achievesmall within clustering distances by

recursively merging two existing clusters that yield minimum between-cluster distance. The clustering

procedure can be visualized by a tree structure calleddendrogram. We propose a new way of merging

clusters which ensures connectivity of any cluster at any level of the clustering hierarchy. In summary,

the algorithm differs from the usual agglomerative clustering without constraints in two ways. First, a

graph recording the connectivity between clusters is created recursively after each step of merging. At any

particular iteration, the current clusters are treated as nodes in the graph. We denote the graph at iterationp

by G(p). Second, two clusters can be merged only if they are connected according to the graph at the current

iteration. Detailed description of the algorithm is as follows.

1. Let the starting clustersC(0)
k = {xk}, k = 1, 2, ..., n, and the number of clustersK = n. Denote

the distance between clusters̄D(C(0)
i , C(0)

j) = D(xi, xj). Here, notationD̄ is used to distinguish the

distance between groups of points from the distance betweenindividual points. Construct graphG(0)

on vertices{C(0)
k , k = 1, 2, ..., n}. Moreover,(C(0)

i , C(0)
j) ∈ G(0) if (xi, xj) ∈ G.

2. At iterationp, p > 0:

6

(a) Find the pairi∗ < j∗ such that(C(p−1)
i∗ , C(p−1)

j∗) ∈ G(p−1) and

D̄(C(p−1)
i∗ , C(p−1)

j∗) = min
(C

(p−1)
i ,C

(p−1)
j)∈G(p−1)

D̄(C(p−1)
i , C(p−1)

j) .

Note that becauseG is connected,G cannot be divided into mutually disconnected subgraphs.

Hence, there always existsi andj such that(C(p−1)
i , C(p−1)

j) ∈ G(p−1).

(b) MergeC(p−1)
i∗ andC(p−1)

j∗ into a new cluster:C(p)
i∗ = C(p−1)

i∗ ∪ C(p−1)
j∗ .

(c) Retain the other clusters:C(p)
i = C(p−1)

i , for i < j∗, i 6= i∗, and C(p)
i = C(p−1)

i+1 , for

j∗ ≤ i ≤ K − 1. For brevity of notation, let us usei ↑ to denote the index of the cluster

at the previous iterationp − 1 which becomes clusterC(p)
i . Also, definei∗ ↑= i∗. For i < i∗ or

i∗ < i < j∗, i ↑= i. Forj∗ ≤ i ≤ K − 1, i ↑= i + 1.

(d) Update the graph fromG(p−1) toG(p). G(p) is constructed on vertices{C(p)
k , k = 1, 2, ...,K−1}.

For anyi, j 6= i∗, (C(p)
i , C(p)

j) ∈ G(p) if (C(p−1)
i↑

, C(p−1)
j↑

) ∈ G(p−1). If either i or j = i∗, and

without loss of generality, assumei = i∗, then(C(p)
i∗ , C(p)

j) ∈ G(p) if (C(p−1)
i∗ , C(p−1)

j↑
) ∈ G(p−1)

or (C(p−1)
j∗ , C(p−1)

j↑) ∈ G(p−1). An illustration of the creation of the new graph will be provided

by a figure momentarily.

(e) Update the between-cluster distances. For anyi 6= i∗ and j 6= j∗, D̄(C(p)
i , C(p)

j) is given

because the two clusters are inherited from the previous iterationp − 1. Compute the distances

D̄(C(p)
i∗ , C(p)

j), for all 1 ≤ j ≤ K, j 6= i∗. Details on distance updating will be described shortly.

(f) Reduce the number of clusters:K − 1 → K.

In Appendix A, we prove that clusters generated by the above algorithm are guaranteed to be connected

according toG. The update of the graphG(p) fromG(p−1), as described in Step 2(d), is illustrated in Figure 1.

When two clusters are merged, in the new graph, a third cluster is connected to the merged bigger cluster

if it is connected with either of the component clusters in the initial graph. The edge between any pair of

unchanged clusters is copied from the initial graph if it exists. The between-cluster distances after merging

can be updated in several ways. Some example formulas are provided in Appendix B. We call the algorithm

proposed above theagglomerative connectivity constrained clustering (A3C).

7

a

c

d

e

f

b

a

b

c

d

e (f)

Initial graph Updated graph

Figure 1: Update of the graph after clusters are merged

3 Image Segmentation

A color image is digitally represented by an array of vectorsvi,j, 1 ≤ i ≤ mr, 1 ≤ j ≤ mc, wheremr

andmc are the numbers of rows and columns in the image. The vectorvi,j ∈ R3 contains the values for

the Red, Green, and Blue components. In image processing, weoften transform the color vector to a color

space different than RGB, for instance, LUV, where L is the luminance of the color and U and V are the

chromatic components [7]. It is often believed that the LUV space corresponds more directly with human

visual perception.

As explained in Section 1, it is preferable to ensure that segmented regions in an image are spatially

connected. The A3C algorithm achieves this property by using a graph constructed based on spatial

adjacency of pixels. We introduce the following terminologies.

• 8-connected: Pixels with coordinates(i1, j1) and(i2, j2) are said to be 8-connected if|i1 − i2| ≤ 1

and|j1 − j2| ≤ 1.

• Path: a sequence of pixels{(i1, j1), (i2, j2), ..., (in, jn)} such that for any1 ≤ k < n, (ik, jk) and

(ik+1, jk+1) are 8-connected.

• Region: a subset of pixels from the image.

• Connected region: A region is said to be connected if for any two pixels(i, j) and(i′, j′) in the region,

there exists a path linking the two pixels.

• Segment: If an image is divided into several connected regions, eachregion is called asegment.

8

• Patch: If segmentation is performed by agglomerative clustering, to distinguish from the segments

obtained at the end, we call a segment acquired in the intermediate steps apatch.

• Cluster: a group of pixels grouped together by a clustering algorithm. Because A3C satisfies the graph

connection constraint, clusters generated by this algorithm are connected regions, and hence may be

used interchangeably with patches or segments. However, a cluster generated by other algorithms,

e.g., k-means, may not be a connected region.

We do not obtain segmentation by applying A3C directly to thepixels of images. Instead, a multi-stage

clustering approach is developed so that both computational efficiency and good segmentation are achieved.

First, we apply k-means to over segment an image into small patches homogeneous in color. Because k-

means does not guarantee clusters are connected regions, a connected component operation is applied to

each cluster of k-means to extract usually multiple patches. In this beginning step, the goal is to produce a

sufficiently fine division of the images. K-means is computationally more efficient than the agglomerative

clustering approach because there is no need to compute pairwise distances, the complexity of which is in

the order of the square of the number of pixels. Next, A3C is applied in two stages using different definitions

of pairwise distance. At the first stage, the emphasis is on merging visually similar patches. At the second

stage, more sophisticated types of pairwise distances and mechanisms for merging are used in order to

achieve a good overall segmentation. The computational cost is nevertheless low because the second stage

starts with significantly fewer patches.

As will be seen from the detailed description below, the segmentation algorithm tries to combine

various visual cues possibly exploited in human visual perception. Hence, there may seem to be many

tuning parameters. However, for all the images we have shownand tested in the experiment section, those

parameters are fixed. To apply this algorithm to general-purpose color photographs, the parameters do

not need to be tuned. Hence, the segmentation algorithm (software package provided) should be fairly

straightforward to use in practice.

3.1 Distances

To start the agglomerative clustering, we need to compute pairwise distances between image patches. When

Ward’s clustering is used to update the distance after merging two clusters, the initial pairwise distance has

9

to be defined in a specific way so that the merging results in minimum increase of total variation. To update

distances by other schemes, there is no special requirementon the definition of the distance. Next, we

describe several types of distances between patches based on different pictorial characteristics. How these

distances are combined in the clustering algorithm will be explained in Section 3.3 and 3.4.

• Color:

Two versions of color-based distances are defined, one for Ward’s clustering, and the other for any

other linkage scheme. We denote the distance used by Ward’s clustering byDcw and that by other

linkage schemes byDc. Given two patchesi andj, let the average LUV color vectors for pixels in the

patches beyi, yj ∈ R3. Let || · || denote the Euclidean distance, andni, nj be the number of pixels in

patchi, j respectively. We also refer toni as the area or size of the patch. Then, we define

Dcw(i, j) = ||yi − yj||2 ·
ninj

ni + nj

,

and

Dc(i, j) = ||yi − yj||/
√

3 .

• Location: For each patchi, we compute the average coordinates of the pixels in the patch. Let

the average horizontal and vertical coordinates of patchi be zi ∈ R2. We defineDl simply as the

Euclidean distance between the average coordinates:Dl(i, j) = ||zi − zj ||, andDlw for Ward’s

clustering:Dlw(i, j) = ||zi − zj ||2 · ninj

ni+nj
.

• Edge: We define a distance to reflect the extent of separation by edges at the boundary between two

patches. First, Sobel filter [11] is used to compute the gradient at every pixel in the image using the

LUV color components individually. We apply the following two Sobel filters at each pixel to obtain

the horizontal and vertical derivatives (in digitized version) gx andgy.













−1 0 1

−2 0 2

−1 0 1













,













1 2 1

0 0 0

−1 −2 −1













10

The gradient is calculated by
√

g2
x + g2

y . The combined gradient is the average of the three gradient

values based on LUV components respectively. The rationaleto combine gradients in all the LUV

components is to increase sensitivity to color variation. One may still perceive an edge if the color

changes abruptly, but not the luminance component. For two neighboring patchesi andj, we compute

the average combined gradient at the boundary pixels located between the two patches. These average

gradient values are scaled to the range of[0, 1] and are used as the edge-based distance between

patches, denoted byDe.

• Balanced partition measure (BPM): This measure is designed to encourage segmentation into

regions with similar sizes in one image. It is more concernedwith the final appearance of segmentation

than the closeness of two patches to be merged, and is intended to be used under the scenario that all

patches are already substantially different. For instance, in the second stage of applying A3C, when

patches resulting from the first stage have already achievedcertain level of pairwise dissimilarity,

the emphasis is shifted somewhat from merging similar patches to obtaining a visually appealing

segmentation result. Motivated by the observation that human eyes tend to recognize large patches

of an image at a quick glance, we include BPM as part of the distance between regions. Because the

combined distance also incorporatesDc andDe, the effect of BPM is negligible if the edge and color

differences are strong enough to mark out a region.

Let the proportional sizes of a set of clusters be{p1, p2, ..., pk}. Thepi’s form a discrete distribution

with
∑

pi = 1. Suppose clustersi andj, i < j, are merged and the resulting proportions of the

k− 1 clusters are:({p1, p2, ..., pk}− {pi, pj})∪ {pi + pj}. The BPM of clustersi andj is defined as

the L2 norm between the distribution given by the newk − 1 proportions and a uniform distribution.

Specifically, if we denote thek − 1 proportions inP(i, j) = ({p1, p2, ..., pk} − {pi, pj}) ∪ {pi + pj}

by p′l, l = 1, ..., k − 1:

Dbpm(i, j) =

√

√

√

√

∑

p′
l
∈P(i,j)

(

p′l −
1

k − 1

)2

.

• Jaggedness measure: The jaggedness of the boundary between two neighboring segments is

measured and used as a distance. We adopt the heuristic that smoother or more regular boundaries are

more likely to be true object boundaries, while jagged boundaries are more likely caused by lighting

11

and surface texture. First, we define a boundary pixel asjaggedif in its 8-connected neighborhood,

which contains a total of 9 pixels including itself, 5 or morepixels are not in the same segment as

this pixel. The rationale is as follows. Consider a pixel at the boundary of two segments. If the two

segments are separated by a smooth curve, at the refined pixelscale, the smooth curve either passes

through the pixel as a straight line or as a line bended at the pixel. Since image pixels locate on a

discretized grid, there are only four directions for a line in a3 × 3 block to take: horizontal, vertical,

45o, −45o. For a bended line with the turning point located at the pixelof interest, there are only three

bending angles:45o, 90o, and135o. We consider bending angle smaller than135o a sharp corner,

which a smooth curve should not bear.

......

......

......

......

(a) (b) (c) (d) (e) (f) (h)

(j) (k) (l) (m)(i)

(g)

(n) (o) (p)

Figure 2: Different separation patterns for a boundary point between two segments indicated by filled and
blank squares respectively.

Figure 2 (a)-(d) show the separation of two segments by straight line boundaries in four orientations;

Figure 2 (e) shows the one representative case of135o bending boundary lines (the other cases can

be obtained by reflection); and Figure 2 (f)-(h) show the45o and90o bending boundary lines. The

pixel in consideration is always shown at the center of the3 × 3 block, therefore referred to as the

center pixel. We see that when the bending line has a sharp angle, the number of pixels in the same

segment as the center pixel is smaller than 5, while for cases(a)-(e), that number is at least 5. If the

number of pixels in the same segment as the center pixel is only 2, with representative cases shown

12

in Figure 2 (i), (j), the center pixel is an end point of a line protruding into the other segment, an

indication of irregular separation between the two segments. In the cases shown from (a)-(j), within

the3 × 3 blocks, pixels are connected for the neighboring segment shown by the blank squares. In

some rare cases, the neighboring segment is disconnected (according to 4-connection) in the3 × 3

block, as shown by Figure 2 (k)-(p). To decide whether the center pixel locates on a smooth boundary

requires examination of pixels outside the3× 3 block. In (k)-(m), examples are shown that the center

pixel resides on a dangling boundary thrusting into the neighboring segment. On the other hand, in

(n)-(p), the center pixel is on a thin smooth boundary. To keep the calculation simple, we still use

the “≥ 5” criterion for these cases. If the pixels represented by thefilled squares in examples (n)-(p)

are actually at the end of a dangling boundary, the jaggedness of the boundary can be captured by the

non-center pixels.

To summarize, when the two segments are separated by smooth curves, zooming in the3 × 3

neighborhood of one pixel on the boundary curve, at least5 neighboring pixels are in the same

segment as the former. It is subjective to quantify the levelof “jaggedness”. We hereby introduce

a simple test for declaring a boundary pixel as jagged:5 or more pixels in its3 × 3 neighborhood are

in a different segment. To define a measure for the level of jaggedness for two segments denoted byCi

andCj, we find the number of boundary points,ni (nj), in Ci (Cj) that are adjacent toCj (Ci). Among

theseni + nj points located at the boundary, we count the number of jaggedpoints,njag, according

to the test described. The measure of jaggedness is

Djag(i, j) = 1 − min

(

njag

2n1
+

njag

2n2
, 1

)

,

which is also scaled so that the range of values is one.

3.2 Generate the Initial Pixel Patches

The computational complexity of A3C, as of any other pairwise distance based clustering method, is

quadratic in the number of objects to be clustered. Because image sizes vary enormously and it is now

common for a digital photo to contain millions of pixels, we perform a preparation step to group pixels into

relatively homogeneous small patches before applying the A3C algorithm to these patches. Comparing with

13

applying agglomerative clustering directly to the pixels,this strategy reduces the computation by several

orders of magnitude. Moreover, it makes clustering less sensitive to the size of an image. A high resolution

image with much more pixels than a low resolution image usually does not yield significantly more patches

to start with.

The basic idea for generating the patches is to apply k-meansclustering to the color vectors of the pixels.

We gradually increase the number of clusters in k-means clustering until the resulting total within-cluster

distance is below a given threshold. By using a small threshold, the color vectors in the same cluster are

forced to be very close to the cluster average. The pixels in the same cluster are not guaranteed to be

connected in the image. We apply the connected component operation to find all the connected components

for every cluster. Each connected component of pixels in thesame cluster becomes a patch.

It is observed that the sensitivity of human vision to color variation depends on the size of the image area

looked upon. The same amount of change in color over a larger area is more obvious than over a smaller one

due to the blurring of the eyes. When an area is small, this blurring effect makes it difficulty for human eyes

to discern variation. Motivated by this observation, we design an iterative procedure to create the patches.

Instead of applying k-means once using a single threshold, we employ a decreasing sequence of thresholds

θ1 > θ2 > · · · > θl. A patch acquired at a largeθi tends to have more color variation. But if it is small

enough, it will not be further divided. In the initial iteration, all the pixels in the image are considered. Let

the collection of pixels at the beginning beI1. Fori = 1, ..., l, repeat the following.

1. Apply k-means with thresholdθi to color vectors of pixels inIi. That is, the number of clusters in

k-means is the smallest integer such that the resulting average within cluster distance is belowθi.

2. Find connected components in the image based on the clustering labels generated by k-means. Every

connected component becomes a patch.

3. At iterationi < l, for every pixel inIi, if it locates in a patch with size above thresholdζ, it is put in

Ii+1, otherwise excluded. The excluded patches are recorded in the list of final patches. At iteration

i = l, all the patches are put in the list.

After the connected components are found, some patches willbe of very small sizes and appear like

pepper and salt noise in the segmented image. We remove thesenoisy patches by an iterative merging

14

procedure. Let the threshold for the smallest allowable patch size beδ. We sort the patches in ascending

order according to their sizes. Let the sorted patches beC(0)
(1) , ...,C(0)

(k0) with sizesS(C(0)
(1)) ≤ S(C(0)

(2)) · · · ≤

S(C(0)
(k0)). SupposeS(C(0)

(1)) < δ. In thetth iteration, starting fromt = 1, do the following.

1. Find all the patches that are neighbors toC(t−1)
(1) and compute the color based distanceDc between

C(t−1)
(1) and each of its neighboring patch. MergeC(t−1)

(1) with the patch yielding the smallestDc.

2. Sort in ascending order the new set of patches. Denote the sorted new patches byC(t)
(1), ..., C(t)

(kt)
. If

S(C(t)
(1)

) < δ, let t + 1 → t and go to step 1. Otherwise, stop.

3.3 First-stage A3C

After the initial patches are obtained, we apply the A3C algorithm to merge patches that are connected with

each other. Considering each patch as a node, the constraining graph is constructed based on the spatial

adjacency of the patches. Specifically, any two patches are connected if there exist two pixels, one from

each patch, that are 8-connected neighbors.

Since the initial clusters taken by the agglomerative clustering algorithm are patches rather than single

pixels, the cluster sizes are the numbers of pixels in the patches. For patchi andj, their pairwise distance is

a combination of color, edge, and location based distances:

D1(i, j) =
√

λ2
1Dcw(i, j) + λ2

2Dlw(i, j) + λ3De(i, j) .

The three types of distances are updated separately.Dcw andDlw are updated by the Ward’s clustering

scheme, whileDe is updated by average linkage.λi’s are pre-chosen scaling factors adjusting the relative

importance of different kinds of distances.

3.4 Second-stage A3C

The first-stage clustering aims at merging patches that are visually similar in a local sense— the choice

of merging only depends on the pairwise distances. At the second stage, the pairwise similarity is not

the dominant factor in merging because it is assumed that allthe patches resulting from the first stage are

sufficiently distinct. More emphasis is put on achieving a good overall segmentation. We incorporate the

15

balanced partition measureDbpm into the pairwise distance between patches. Note thatDbpm(i, j) depends

on the proportional sizes of all the clusters after merging,and is not determined by patchi andj alone. The

distance used in the second stage merging is:

D2(i, j) = λcDc(i, j) + λjagDjag(i, j) + λbpmDbpm(i, j) + λeDe(i, j) .

Moreover, we directly eliminate patches with too small sizes by merging them with sufficiently large

neighboring patches. Suppose the second stage A3C starts with N1 patches and targets to merge them into

N2 patches. We set two thresholds,ǫ1 = mr ·mc

N1
×5%, ǫ2 = mr ·mc

N2
×20%, wheremr andmc are the number

of pixels in a row or column of the image. We insert the following steps in the merging procedure of A3C

to avoid generating very small patches.

1. For the initialN1 patches, if any is of size smaller thanǫ1, merge it with a neighboring patch. Similarly

as in agglomerative clustering, the merging is performed recursively with pairwise distances updated

after each step. If there are several small patches that needto be merged with neighboring patches,

the one with the minimum distance to a neighbor is processed first. Repeat the merging until all the

patches are of size aboveǫ1. SupposeN ′
1 patches are left.

2. Apply A3C to theN ′
1 patches. After each merging in A3C, check whether the total size of the largest

N2 patches is abovemrmc − ǫ2. If so, only perform future merging between the small patches and

those among theN2 largest patches. Otherwise, perform the next step of A3C.

4 Experiments

The images we experimented with are all scaled to256 × 384 or 384 × 256 pixels. To acquire the initial

patches, the K-means clustering is applied 4 times with thresholds equally space between600 and3600.

The number of initial patches created for an image varies widely depending on the amount of details in

the image. For instance, for a group of100 photos of closeup shots of roses, the average number of initial

patches is210, while for a group of100 photos of harbor scenes, the average is638. As aforementioned,

some patches generated by k-means are very small and are absorbed into bigger patches via a noise removal

16

step described in Section 3.2. In our experiments, we set thethreshold for the size of a noisy patch to16.

The average number of noisy patches for the rose group is663 while for the harbor group is4410.

4.1 Illustration for Step by Step Segmentation

As explained in Section 3.2, by applying k-means with gradually decreasing thresholds and excluding

sufficiently small patches formed along the way from furtherdivision, we can reduce the sensitivity to color

variation in small areas. Figure 3 shows an example image andits two zoomed-in areas. The segmentation

results obtained using our algorithm and one execution of k-means with threshold600 (same as the smallest

threshold used in our algorithm) are compared. As we can see,our algorithm generates better segmentation

results, while one execution of k-means creates more noisy patches, many containing only a single pixel.

In Figure 4, the step by step segmentation results for an example image is shown. After the initial step,

447 patches are obtained. The first stage merging reduces the number of segments to 22. In the second

stage, the segmentation results obtained with several given numbers of segments are shown.

Figure 3: Compare segmentation by multi-iteration k-meansand a single pass k-means. The two eyes of
the Santa in the original images are zoomed in. The segmentation results by the two methods are compared.
The middle row is based on multi-iteration k-means and the bottom row on single pass k-means.

17

(a) (b) (c)

(d) (e) (f)

Figure 4: Segmentation results for an example image. (a): original; (b): segmented patches via the initial
step; (c): segmentation after the first stage merging; (d)-(f): results after the second stage merging with 12,
6, and 3 segments obtained respectively.

18

4.2 Comparison with K-means

We compare our segmentation algorithm to k-means followed by connected component extraction. For

brevity, we refer to our algorithm as Multistage A3C (MS-A3C) because the segmentation process includes

k-means and A3C conducted through several phases. Results for some example images are provided in

Figure 5. We see that for most images, the segments obtained by MS-A3C correspond with objects clearly

better than those by k-means. Moreover, k-means based segmentation has the issue that we cannot precisely

control the number of connected components obtained at the end. To arrive at the results shown in Figure 5,

for every image, we gradually increased the number of clusters in k-means; and at each number, recorded

the final number of segments formed after extracting connected components and removing noise. Among

these segmentation results, we selected the one with the number of segments closest to the targeted number

chosen beforehand for that image.

Figure 6 shows the number of segments generated by extracting connected components based on the

clustering result of k-means. The plot on the left shows the number of segments before removing small

noisy patches, while that on the right shows the number after. We see that when k-means yields only 2

clusters, for three out of the five example images, the numberof segments is above 150. The number of

segments increases quickly when the number of clusters in k-means increases gradually from 2 to 10. If the

noise removal procedure is applied, the number of segments is drastically reduced. However, the number of

segments still grows much faster than the number of clusters. For instance, when the number of clusters in

k-means increases one at a time from 2 to 5, the average numberof segments obtained for the five images

increases from7.4, to 13, 17.6, and29.8. In summary, the k-means approach lacks a mechanism for setting

the number of segments, even at a moderate granularity. It isnot rare to encounter an image for which the

minimum number of segments producible by the k-means approach is still large.

4.3 Comparison with Graph Partitioning Methods

We compare our segmentation results with that given by the normalized cut image segmentation

algorithm [25], an extremely popular segmentation tool used by researchers, which is referred to in short as

Ncut hereafter. The Matlab package provided at http://www.cis.upenn.edu/∼jshi/software/ is used. We

also compare our algorithm with a recently developed algorithm, called OWT-UCM [1], the software

19

Figure 5: Segmentation result for example images. From leftto right: column 1: original image; column 2:
segmentation results by MS-A3C; column 3: Ncut; column 4: OWT-UCM; column 5: k-means.

20

2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

Number of clusters in K−means

N
um

be
r

of
 s

eg
m

en
ts

1st
2nd
3rd
4th
5th

2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

Number of clusters in K−means

N
um

be
r

of
 s

eg
m

en
ts

1st
2nd
3rd
4th
5th

Figure 6: Number of segments generated based on k-means clustering using different numbers of clusters
for five example images. Left: before removing noisy patches, the number ranges between 9 and 3000.
Right: after removing noisy patches, the number ranges between 3 and 100.

provided at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/. The gpb detector in the

OWT-UCM software is used to obtain the contours. The OWT-UCMalgorithm aims at improving the

segmentation accuracy of Ncut, but not the computational speed. Although Ncut does not directly enforce

connected regions, in practice, it is very rare for disconnected regions to appear. One possible reason is that

location proximity between pixels is incorporated into thesimilarity measure. Hence, as we will see from

the experimental results, the main advantages of our algorithm over Ncut are higher accuracy and faster

computation. Although OWT-UCM also generates segments by first over-segmenting the image and then

iteratively merging adjacent regions, the over-segmentation step itself is based on spectral graph partitioning

and is thus computationally intensive. Instead of exploiting over-segmentation to achieve scalability as in

our algorithm, over-segmentation in OWT-UCM is utilized toavoid breaking a large region incorrectly into

smaller pieces, as is often done by Ncut. The region merging in OWT-UCM at the second step exploits a

graph-based method, where the graph records the spatial adjacency of regions. This is different from our

A3C algorithm with several types of linkage schemes.

The Ncut algorithm requires a pre-given number of segments.In our algorithm, a user can either specify

the number of segments, or let the algorithm automatically choose the number of segments. If not specified,

the number of segments is set to be one third of the number of patches created after the first stage merging.

For many images we experimented with, the automatically chosen number of segments is reasonable, and we

21

accepted those numbers. For a few dozens of images with close-up shots of roses and dogs, the automatically

chosen numbers tend to be large because the close-up objectsin the images have great variation within

themselves. We thus manually selected the number of segments. For the rose images, we set the number

of segments to 5. For the dog images, if the background is relatively homogeneous, we set the number of

segments to the number of dogs in the picture plus 1 (to account for the background); otherwise, a few more

segments are added. For the Ncut segmentation results, we used the same number of segments for every

image as that in our algorithm. For the OWT-UCM method, the number of segments cannot be directly

specified. It is determined by a threshold applied to the strength levels of contours. In our experiments, we

exhaustively searched through all the possible values of the threshold and recorded the resulting number of

segments. We chose the result with the number of segments matching that used by our algorithm. For more

than95% of the images we experimented with, the number of segments can be exactly matched. For the rest

of the images, we let the number of segments obtained by OWT-UCM be larger than that of our algorithm

by one.

Segmentation results for 20 example images are compared in Figure 5. We see that in general, the MS-

A3C and OWT-UCM algorithms generate segments that follow object boundaries more faithfully than Ncut.

Ncut focuses on achieving a good global separation, and often ignores the boundaries of objects. As a result,

segments generated often contain fragments of multiple objects or objects and background. The boundaries

by OWT-UCM tend to be smoother than those by MS-A3C. However,OWT-UCM appears to be more likely

to combine several objects into one region and in the mean time to generate tiny regions of little importance

in the images.

To numerically compare the three algorithms, we manually assessed the segmentation results on 220

images. It is well known that evaluation of segmentation is inevitably subjective because of the lack of

ground truth. We adopt two strategies in our scoring scheme,which is significantly more objective than

eyeballing the results. First, a score for segmentation quality is given to every segmented region rather

than a whole image so that the evaluation process is broken into more manageable smaller tasks. Second,

every segment is categorized into seven types with clear definitions. We believe that categorization can be

conducted more decisively than assigning numerical scoresaccording to subjective impression. Scores can

then be given to each category to yield a numerical assessment for each image. One also has the freedom to

22

vary the scores to better suit his own judgment of quality without repeating the manual evaluation process.

Definitions for the seven types of segmented regions are described below.

1. Typea: The segment accurately corresponds to an object. The accuracy is up to the allowed resolution

of the image. For instance, in Ncut, because the images are scaled down, the segmentation boundaries

appear crude when scaled back to the original resolution. Westill consider a segment accurate as long

as the boundary roughly follows the object boundary.

2. Typeb: The segment is a portion of an object, but close to the entity. For instance, a flower with a

small portion (e.g., visually below20%) of the petals missing.

3. Typec: The segment is a portion of an object, but not close to the entity.

4. Typed: The majority (visually above80%) of the segment is one complete object.

5. Typee: The segment is a combination of several objects.

6. Typef : The segment contains a complete object and parts of other objects.

7. Type g: The segment contains parts from several different objectsor background. This type is

considered the worst scenario for a segment.

For the 220 images, the total number of segments in each type is listed Table 1. The table shows that for

MS-A3C, typea andc dominate, with considerably more typea, while for Ncut, typea, c, andg dominate,

with considerably more typec thang anda, and more typeg thana. OWT-UCM performs much closer

to MS-A3C than Ncut. The number of typeg segments is nearly the same as that by MS-A3C. As with

MS-A3C, typea andc also dominate. However, the number of typea segments by OWT-UCM is smaller

than that by MS-A3C, while the number of typec by OWT-UCM is larger than by MS-A3C.

To summarize the results, we assign a score for each type. Thehigher the score is, the better the segment.

One set of scores we use for typea-g are:(a, 5), (b, 4), (c, 3), (d, 4), (e, 3), (f, 2), (g, 1). The average scores

for the images under this score set (set 1) are shown in Table 1. If we simplify the scores and assign5 to a, 1

to g, and3 to every other types (set 2), the average scores vary slightly, as shown also in Table 1. MS-A3C

achieves on average one point higher than Ncut under both sets of scores, and slightly higher scores than

23

OWT-UCM. The histograms for the scores (under score set 1) ofthe 220 images using the three algorithms

are compared in Figure 7.

Type a b c d e f g Ave. Ave.
(score set 1) (score set 2)

MS-A3C 487 99 376 71 31 47 33 3.91 3.82
Ncut 209 42 472 46 26 81 267 2.84 2.85

OWT-UCM 407 57 447 51 84 70 35 3.71 3.69

Table 1: Segmentation results for MS-A3C, Ncut, OWT-UCM

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

5

10

15

20

25

30

35

40

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

5

10

15

20

25

30

35

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

5

10

15

20

25

30

35

40

Figure 7: Histograms for the scores of the 220 images. Left: MS-A3C. Middle: Ncut. Right: OWT-UCM.

Ncut and OWT-UCM are both computationally more intensive than MS-A3C. For OWT-UCM, the

majority of the computation time is spent on over-segmenting an image in the first step. For Ncut, to acquire

the segmentation of an image in a relatively short time, images are scaled to a size with the maximum

dimension no greater than 160 pixels. For OWT-UCM and MS-A3C, the original images with size 256x384

(or 384x256) are used. The average running time for Ncut to segment any of the 220 shrunken images is

21.8 seconds on a PC with 2.8 GHz CPU cycles. The average running time for OWT-UCM to segment

an original image is308.7 seconds on 2.8 GHz CPU. MS-A3C completes the segmentation ofan original

image in8 seconds on average on a PC with 3.4 GHz CPU cycles. If we convert the CPU cycles to the

equivalence of 2.8 GHz, the average segmentation time is roughly 9.8 seconds. In all the cases, the time

to load the image into the computer is excluded. For OWT-UCM,the time to search for a proper threshold

that yields a desired number of segments is excluded although the time is negligible comparing with that for

over-segmentation. We see that Ncut requires more than twice of the time to segment an image shrunken

more than half both horizontally and vertically than MS-A3C, while OWT-UCM, operating on images with

the original sizes, requires more than thirty times longer time.

24

5 Conclusions and Discussion

In this paper, we have developed a new image segmentation algorithm that combines the strengths of

k-means and A3C clustering to achieve fast and accurate segmentation. A software package for this

algorithm is provided athttp://www.stat.psu.edu/∼jiali/msa3c. A set of features that take into account

color variation, edge separation, and global characteristics are developed using various statistics computed

from a neighborhood of pixels. Experimental results show that MS-A3C has apparent advantages over

existing methods such as k-means, Ncut, and OWT-UCM in termsof segmentation accuracy, computational

complexity, and flexibility with setting the number of segments.

For a task as challenging as image segmentation, a direct plug-in of a certain clustering method is

insufficient to meet the demands of both speed and quality. Human visual perception of images remains

largely a mystery. The method developed here attempts to capture multiple lines of heuristics about the

process. The ideas may appear intuitive rather than theoretical, but this simply reflects the complexity of

the human cognition. The current work aims primarily on achieving good segmentation rather than theories

about clustering and is thus in this sense an application kind (albeit a very difficult one). As an application,

our work exemplifies the power of integrating several clustering methods into the design of a coherent

system. In another word, clustering methods are viewed as elements for design, which are to be fitted into a

system rather than to be selected as a system.

It is found that distortion of an image due to compression, for instance, the JPEG compression scheme,

causes jagged boundaries or regions with thin dangling parts. These problems can be alleviated by

performing segmentation on resolution reduced images. Artifacts resulting from compression are suppressed

at the lower resolution due to the smoothing effect. The ideaof smoothing before segmenting noisy

images has been investigated in the literature, e.g., segmentation of microarray images [22, 23]. We

found that applying our algorithm to smoothed images at the original resolution actually yields worse

results. The reason is that the edges are obscured after smoothing. However, by shrinking the image

to a smaller size, sensitivity to artifacts is reduced without suffering the loss of prominent edges. When

we convert the segmentation result on the shrunken image back to the original size, a simple expansion

will lead to blocky boundaries. Therefore, we developed a method that attains refined boundaries at the

higher resolution by comparing pixels along the boundarieswith pixels inside the segmented regions. If

25

segmentation is performed on an image subsampled several resolutions down, the boundary refinement is

iteratively conducted through the resolutions, each iteration raising the resolution of the segmented regions

by only one level. This technique of gradually refining segmented regions acquired in a lower resolution

can also be used for the mere purpose of smoothing the segmentation boundaries. Suppose segmentation is

obtained at a high resolution. We can subsample the segmented regions to a lower resolution. Because of

jagged boundaries, small portions of a region may be broken away from the main part. These small broken

pieces can be removed. Then when we convert the segmentationback to the original resolution using

the aforementioned technique, we obtain regions with smoother boundaries. In our segmentation software

package, we implemented the function to segment an image at alower resolution and then to convert the

result back to the original resolution as well as the function to smooth segmentation boundaries. We do not

show examples in this paper due to the limitation of space, but the functions are provided in the software

package which is available to the public.

One direction of future work is to enhance the computationalefficiency of the algorithm. The amount

of computation required by any basic bottom-up clustering method grows quadratically with the number of

objects to be clustered, hindering scalability. A top-downclustering approach is advantageous in this sense

because not all the pairwise distances between objects are needed. The computational complexity is usually

linear in both the number of objects and the number of clusters. The computational load of A3C may be

lower than quadratic although it is a bottom-up approach because the constraining graph may be sparse,

allowing only certain pairs of objects to be grouped. However, this is only true under the assumption that

the graph construction itself is not included in the computation, which may not always be so in practice. In

our current work, to reduce computation, we use k-means, a top-down approach, to generate an initial set

of objects before applying A3C. The number of patches resulting from k-means is much smaller than the

number of pixels in an image. As a general strategy to reduce computation, we can also consider dividing the

original set of objects into several groups using a top-downapproach, and then restricting the agglomerative

clustering to objects within the same group or objects within a few similar groups. After a certain number of

merging steps, the number of clusters left will be reduced toa value small enough for applying agglomerative

clustering at the full scale.

26

Appendix A

We now prove that the agglomerative algorithm in Section 2 generates clusters satisfying the graph

connectivity constraint. Let{x1, ..., xn} be the set of objects to be clustered. The graph imposed onxi’s

is G. The A3C algorithm generates a sequence of clustering results. Initially, every object is one cluster

C(0)
k = {xk}, k = 1, 2, ..., n. At each iteration, the number of clusters reduces by one dueto the merge of

two clusters. Let the clusters formed at iterationp be{C(p)
1 , ..., C(p)

n−p}, p = 1, 2, ..., n − 1. A graphG(p) is

formed on the nodesC(p)
k

’s recursively according to the description in the algorithm.

We first prove the following lemma.

Lemma: If (C(p)
k

, C(p)
k′) ∈ G(p), then there existxi ∈ C(p)

k
andxj ∈ C(p)

k′ such that(xi, xj) ∈ G.

Proof: We prove by induction. Whenp = 0, sinceC(0)
k = {xk}, this is true by construction. Suppose

the statement is true forp. We prove it is also true forp + 1.

ConsiderC(p+1)
k andC(p+1)

k′ with (C(p+1)
k , C(p+1)

k′) ∈ G(p+1). Either of the following two cases occurs.

1. If C(p+1)
k

= C(p)
k↑

andC(p+1)
k′ = C(p)

k′↑
, that is, both clusters are inherited directly from the previous

iteration, then(C(p)
k↑ , C(p)

k′↑) ∈ G(p) according to the construction ofG(p+1) from G(p). Hence, there

existxi ∈ C(p)
k↑ = C(p+1)

k andxj ∈ C(p)
k′↑

= C(p+1)
k′ such that(xi, xj) ∈ G.

2. Now consider the other case. Without loss of generality, assumeC(p+1)
k

is merged fromC(p)
k

and

C(p)
l

, k < l, while C(p+1)
k′ = C(p)

k′↑
. If (C(p+1)

k
, C(p+1)

k′) ∈ G(p+1), then (C(p)
k

, C(p)
k′↑

) ∈ G(p) or

(C(p)
l , C(p)

k′↑) ∈ G(p).

(a) If (C(p)
k , C(p)

k′↑) ∈ G(p), then there existxi ∈ C(p)
k ⊂ C(p+1)

k andxj ∈ C(p)
k′↑ = C(p+1)

k′ such that

(xi, xj) ∈ G.

(b) If (C(p)
l , C(p)

k′↑
) ∈ G(p), then there existxi ∈ C(p)

l ⊂ C(p+1)
k andxj ∈ C(p)

k′↑
= C(p+1)

k′ such that

(xi, xj) ∈ G.

In summary, if(C(p+1)
k , C(p+1)

k′) ∈ G(p+1), then there existxi ∈ C(p+1)
k andxj ∈ C(p+1)

k′ such that

(xi, xj) ∈ G.

Hence, we have proved that the statement is true forp + 1, and thus true for anyp = 1, ..., n − 1.

Next, we prove the following proposition.

27

Proposition: For anyp = 1, ..., n − 1, 1 ≤ k ≤ n − p, C(p)
k

is connected according toG.

Proof: We again prove by induction. Whenp = 0, sinceC(0)
k contains onlyxk, C(0)

k is connected by

construction. Suppose the proposition holds forp. We prove it also holds forp+1. The following two cases

apply toC(p+1)
k .

1. If C(p+1)
k = C(p)

k↑ , that is,C(p+1)
k is inherited from the previous iteration, by the assumption, C(p+1)

k is

connected according toG.

2. If C(p+1)
k is merged fromC(p)

k andC(p)
l , k < l, then

(a) BothC(p)
k andC(p)

l are connected according toG.

(b) (C(p)
k

, C(p)
l

) ∈ G(p) since the two cannot be merged otherwise.

According to the lemma, there existxi′ ∈ C(p)
k andxj′ ∈ C(p)

l such that(xi′ , xj′) ∈ G. Consider any

xi, xj ∈ C(p+1)
k

. Either of the following two cases occurs.

(a) Both xi and xj belong toC(p)
k (or C(p)

l). Because the proposition holds atp, xi and xj are

connected inG.

(b) xi belongs toC(p)
k , while xj belongs toC(p)

l (or the other way around without loss of generality).

SinceC(p)
k is connected, there exists a path betweenxi andxi′ . Similarly, sinceC(p)

l is connected,

there exists a path betweenxj andxj′ . Because(xi′ , xj′) ∈ G, a path betweenxi andxj can be

constructed fromxi to xi′ , to xj′, to xj . Thusxi andxj are connected byG. Therefore,C(p+1)
k

is connected byG.

In summary, we have proved thatC(p)
k

is connected according toG, for any p = 1, ..., n − 1,

1 ≤ k ≤ n − p.

Appendix B

Suppose clusterCr andCs are merged into a new clusterCt. Let Ck be any other cluster. The following list

provides several schemes of updating the distanceD(Ct, Ck) from D(Cr, Ck) andD(Cs, Ck). Let the size of

clusterCr, Cs, Ck benr, ns, nk correspondingly.

28

• Single linkage:

D(Ct, Ck) = min(D(Cr, Ck),D(Cs, Ck))

• Complete linkage:

D(Ct, Ck) = max(D(Cr, Ck),D(Cs, Ck))

• Average linkage:

D(Ct, Ck) =
nr

nr + ns

D(Cr, Ck) +
ns

nr + ns

D(Cs, Ck)

• Ward’s clustering:

D(Ct, Ck) =
nr + nk

nr + ns + nk

D(Cr, Ck) +
ns + nk

nr + ns + nk

D(Cs, Ck) −
nk

nr + ns + nk

D(Cr, Cs)

References

[1] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “From contours to regions: an empirical evaluation,”

CVPR, pp.2294-2301, 2009.

[2] J. D. Banfield and A. E. Raftery, “Model-based Gaussian and non-Gaussian clustering,”Biometrics,

49:803-821, 1993.

[3] H. D. Cheng, X. H. Jiang, Y. Sun, and J. Wang, “Color image segmentation: advances and prospects,”

Pattern Recognition, 34(12):2259-2281, 2001.

[4] H. Chipman and R. Tibshirani, “Hybrid hierarchical clustering with applications to microarray data,”

Biostatistics, 7(2):286-301,2006.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM

algorithm,” Journal Royal Statistics Society, 39(1):1-21, 1977.

[6] B. S. Everitt, S. Landau, and M. Leese,Cluster Analysis, Oxford University Press US, 2001.

[7] M. D. Fairchild,Color Appearance Models, 2nd Ed., Wiley, 2005.

29

[8] C. Fraley and A. E. Raftery, “Model-based clustering, discriminant analysis, and density estimation,”

Journal of the American Statistical Association, 97:611-631, 2002.

[9] J. Freixenet, X. Munoz,, D. Raba, J. Marti, and X. Cufi, “Yet another survey on image segmentation:

region and boundary information integration,”Lecture Notes in Computer Science,, vol. 2352, Proc.

ECCV, pp. 21-25, 2002.

[10] A. Gersho and R. M. Gray,Vector Quantization and Signal Compression, Kluwer Academic

Publishers, 1992.

[11] R. C. Gonzalez, R. E. Woods,Digital Image Processing, 2nd Ed., Prentice Hall, 2002.

[12] P. Hansen, B. Jaumard, C. Meyer, B. Simeone, V. Doring, “Maximum split clustering under

connectivity constraints,”Journal of Classification, vol. 20, pp. 143-180, 2003.

[13] R. M. Haralick, L. G.. Shapiro, “ Image segmentation techniques,” Applications of Artificial

Intelligence II., 548:2-9, 1985.

[14] T. Hastie, R. Tibshirani, and J. Friedman. The Elementsof Statistical Learning. Springer-Verlag, 2001.

[15] A. K. Jain and R. C. Dubes,Algorithms for Clustering Data, Prentice-Hall, Inc., NJ, USA, 1988.

[16] J. Li, “Clustering based on a multi-layer mixture model,” Journal of Computational and Graphical

Statistics, 14(3):547-568, 2005.

[17] J. Li, R. M. Gray,Image Segmentation and Compression Using Hidden Markov Models (monograph),

Springer, 2000.

[18] J. Li, J. Z. Wang, “Real-time computerized annotation of pictures,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 30(6):985-1002, 2008.

[19] G. J. McLachlan and D. Peel,Finite Mixture Models, New York: Wiley, 2000.

[20] E. R. C. Morales, and Y. Y. Mendizabal, “Building and assessing a constrained clustering hierarchical

algorithm,” Lecture Notes in Computer Science (LNCS), vol. 5197, pp. 211-218, 2008.

30

[21] F. Murtagh, “A survey of algorithms for contiguity-constrained clustering and related problems,”The

Computer Journal, vol. 28, no. 1, pp. 82-88, 1985.

[22] P. Qiu, and J. Sun, “Local smoothing image segmentationfor spotted microarray images,”JASA, vol.

102, pp. 1129-1144, 2007.

[23] P. Qiu, and J. Sun, “Using conventional edge detectors and post-smoothing for segmentation of spotted

microarray images,”Journal of Computational and Graphical Statistics, vol. 18, no. 1, pp. 147–164,

2009.

[24] J. C. Russ,The Image Processing Handbook, 5th ed., CRC, 2006.

[25] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans. Pattern Analysis and

Machine Intelligence, vol. 22, no. 8, pp. 888-905, 2000.

[26] S. Vicente, V. Kolmogorov, and C. Rother, “Graph cut based image segmentation with connectivity

priors,” CVPR, pp. 1-8, Anchorage, AK, 2008.

[27] K. Wagstaff, C. Cardi, S. Rogers, and S. Schroedl, “Constrained k-means clustering with background

knowledge,”Proc. Int. Conf. Machine Learning, 2001.

[28] J. Z. Wang, J. Li, G. Wiederhold, “SIMPLIcity: Semantics-sensitive integrated matching for picture

libraries,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9):947-963, 2001.

[29] Z. Wu, R. Leahy, “An optimal graph theoretic approach todata clustering: theory and its application

to image segmentation,”IEEE Trans. Pattern Analysis and Machine Intelligence, 15(11):1101-1113,

1993.

[30] E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell, “Distance metric learning, with application to

clustering with side-information,”Advances in Neural Information Processing Systems 16 (NIPS2002),

521-528, 2002.

31

