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Abstract

We consider the problem of clustering under the constrdiat tata points in the same cluster
are connected according to a pre-existed graph. This @nsitan be efficiently addressed by an
agglomerative clustering approach, which we exploit tostarct a new fully automatic segmentation
algorithm for color photographs. For image segmentatidrthé pixel grid with eight neighbor
connectivity is imposed as the graph, each group of pixefeegged by this clustering method is
ensured to be a geometrically connected region in the imag#gsirable trait for many subsequent
operations. To achieve scalability for images with largesj the segmentation algorithm combines the
top-down k-means clustering with the bottom-up agglomezatustering method. We also find that it is
advantageous to conduct clustering at multiple stagesigiravhich the similarity measure is adjusted.
Experimental results with comparison to other widely used state-of-the-art segmentation methods
show that the new algorithm achieves higher accuracy at nfagtier speed. A software package is
provided for public access.
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1 Introduction

Research efforts have been devoted to developing clugtethniques for several decades. Motivated by
problems in different domains, researchers in multipleigi;es including statistics, computer science, and
electrical engineering, have eventually come to face timenoon abstracted problem of clustering data, and
have fairly independently invented various methods, whitére principles but differ in treatment. We point

readers to [14, 6, 10, 15] as excellent references to a vastdfditerature on clustering. With the explosion

*Jia Liis an Associate Professor in the Department of Stesist the Pennsylvania State University. Email: jiali@gsu.edu

1



of data in the current era of information technology as weltlee much increased complexity of data, new
challenges for clustering continue to emerge in a wide rasfggpplications. Despite the long history of
studies on clustering, the topic has sustained interesis fesearchers in traditional disciplines, and has

attracted interests from those in nascent fields, e.g., atatipnal biology.

1.1 Main Approachesto Clustering

Clustering methods can be categorized in several ways. Wecoatrast them as optimization-based
versus model-based. In the former approaches, usually amipation criterion is proposed to reflect
the belief about what constitutes a good clustering re3iieén, numerical methods are derived to solve the
optimization problem. In model-based approaches, eadteslis assumed to follow a certain parameterized
distribution [19, 2, 8] or a mixture of such distributionsg1 The clustering problem is then converted into
statistical model estimation. When the mixture model i»ined, the EM algorithm [5] is most commonly
used to estimate the parameters. In terms of the way cluaterformed, methods can be divided into
top-down versus bottom-up, with a hybrid proposed by [4].tHe bottom-up, also called agglomerative,
approaches, existing clusters are merged recursivelypaiteat a time, starting from clusters containing
a single object. Only pairwise distances between objeetseeded. There is usually a distance updating
scheme that generates distances between clusters when@usssy is formed by combining an existing
pair. Examples of the distance updating scheme includdesimpmplete, average linkage, and Ward'’s

clustering, which greedily minimizes the total variation.

1.2 Clustering with Connectivity Constraints

In some applications, the formed clusters are required tet mertain conditions in addition to the generic
requirement that entities within the same cluster are a#asias possible according to a given measure. For
instance, in image analysis, clustering is often appliquxel-level feature vectors such as colors to separate
pixels in an image into groups [15, 17]. Segmentation of thage is achieved by taking every group of
pixels as one segmented region. The purpose of segmenttiem is to build a rough correspondence
between segmented regions and physical objects captutieelimage. This decomposition of an image into

objects facilitates many subsequent analysis, for instametrieval and the prediction of semantics [28, 18].



A usual clustering procedure, however, only ensures thatipin the same cluster are close in the feature
vector space. In the spatial plane, the pixels may not beemiad geometrically. It is heuristically irrational
that several fragmented patches form one object. One wailidally prefer to have each segmented region
be spatially connected. There is no obvious way to guardhieeAn ad-hoc method often used is to include
the spatial coordinates of pixels as features in clustenvith several issues lingering though. First, it is
unclear what is the best practice to scale the coordinatibsregpect to other features such as color. Second,
even when the coordinates are included as features, thecegsarantee that pixels in each final cluster are
all connected, although without doubt, they tend to be afpaitlose.

We thus pose the following problem. Suppose the entitiesetalbstered are nodes on a graph.
Independently from the graph, a measure of similarity i®gito any pair of entities. We want to cluster the
entities based on the similarity and in the mean time en$aedntities in the same cluster are connected
according to the graph. We call this probl@mnnectivity constrained clusteringnd study the application
to fully automatic segmentation of color images. Due to theagchallenge of image segmentation, a
simple plug-in of the connectivity constrained clusterimgthod is insufficient. Instead, we have to treat
the clustering method as a design element for creating theathsegmentation system. Specifically, it is
combined with other clustering methods, and is conductemlitih several stages with an adaptive similarity
measure. The integrated algorithm achieves both fast spestligh accuracy.

We point out that the graph in our setup serves as a conngctignstraint and is irrelevant to the
similarity measure, a role completely different from thditgoaph-based clustering methods [29, 25], in
which the weighted edges of the graph record values of giityilaReaders can also regard that there
are two graphs in the present setting: one given by the dityilaetween objects that any clustering
algorithm employs and is computed from the data and one igtghesternally that takes into consideration
of neighborhood information.

A related topic to our proposed problem is clustering wittesnformation [27, 30]. There, instead of a
graph constraint, pre-given conditions on the similarifysome pairs of points are available. For instance,
some pairs are labeled “similar” and some “dissimilar’. Téraphasis is on learning a distance metric
that is consistent as much as possible with those conditibhe graph constraint we consider here differs

intrinsically from a set of pairwise relationships becaasanectivity can occur through multiple steps, and



hence the satisfaction of the constraint depends on allritibes put in the same cluster. Moreover, as a
constraint, the connectivity of each cluster is mandatatyile side information is more for consulting and
can be approximated. We should also note that requiring sagimented region be spatially connected may
not be proper for images in some special domain. For instamben segmenting microarray images into

foreground and background, the foreground can be discéathespots in a noisy image [22, 23].

1.3 Reated Work

Connectivity constrained clustering, also referred to astiguity-constrained clustering, has been
investigated and used in several application areas (seeys{21]). For maximum split clustering with
connectivity constraints expressed by a tree graph, Haeseh.[12] provides an exact algorithm with
guadratic complexity in the size of the data set. In the saapeip theoretical results are also given about
the computational complexity of an exact algorithm for domgts expressed by a general graph. However,
to the best of our knowledge, the agglomerative connegtadinstrained clustering in its general form and
allowing different linkage schemes has not been used fiyr fwitomatic segmentation of color photographs.

Recently, the agglomerative connectivity constrainedstelting with average linkage was extended
in [20] by defining a dissimilarity between clusters that elegls only on dissimilarity between connected
data points in the clusters. The paper focuses on the dhugtalgorithm itself and treats superficially the
application to image segmentation. Only one small area dfiglesMRI grayscale image is shown as an
example; and there is no numerical evaluation or compasigtnother methods. The dissimilarity between
pixels is simply the difference in grayscale, which is knowrbe too weak for color pictures. Moreover,
the dissimilarity between two regions depends only on giabng the boundary. For general-purpose
photographs, this definition of dissimilarity is highly m to blurred edges that often exist in a photo
because of the limited depth of view as well as limitationgsalution. As is shown by some state-of-the-art
algorithms [25, 1] and the current work, to achieve good sagation, much more sophisticated measures
are needed for dissimilarity between regions.

In [26], a graph partitioning based clustering method wibmrectivity constrains is applied to semi-
automatic segmentation of images into foreground and bvaakgl. A user is required to specify which

pixels have to be connected with the main object, aka, foregt (assuming a first step segmentation has



acquired most of the main object). In addition, the connégticonstraints tackled in that work, different
from ours, are meaningful only under the setup of manualsistesd segmentation. Although the kind of
connectivity constraints we consider here is brought usi,[it is said to be too difficult for developing

heuristic algorithms and is not further studied.

Automatic image segmentation has been extensively rdssgan (see [13, 3, 9, 24]). We mention in
particular the work of Shi and Malik [25] and that of Arbetaet al. [1], both of which use spectral graph
partitioning. The former algorithm is one of the most widelged methods. The latter, developed recently
by the same research group, is targeted to address linmsatibthe former and is shown to achieve more
accurate segmentation. We thus compare our method witk thesmethods because they are popular and
represent the state-of-the-art.

The rest of the paper is organized as follows. In Section ,cdbnnectivity constrained clustering
problem is formulated and an agglomerative clusteringritlym is proposed. Section 3 is on the application
of the clustering algorithm to image segmentation. Due ¢auhique challenges of image segmentation, the
application is not straightforward. The clustering al¢jum serves as a component of a more comprehensive
design. In Section 4, we illustrate the steps of the segrtientalgorithm and compare results of the
new algorithm with those of existing methods. We concludd discuss future work in Section 5. In
the appendices, a key property of the clustering algoritamproved and details on distance updating are

provided.

2 Agglomerative Connectivity Constrained Clustering

Before formulating connectivity constrained clusteriteg,us provide several graph-related definitions.
1. Agraphg is a collection of node$V, ..., V;,} and edges connecting pairs of nod&s V).
2. Two nodes/; andV; are calledheighborsif the edge(V;, V;) exists inG.

3. A path betweenV; andV; is a sequence of edgé¥;, V;,), (Vi,, Vi), (Vio, Via)s woos (Va1 Vir),
(Vi,., V) which are all included irg.

4. A graphg is connectedf a path exists irg between allV; andV}, i # j, whereV; andV; are nodes
ing.



5. Asubgraphg’ of G contains a subset of the nodgsg, , Vi,, ..., Vi, } and inherits any edg@/ij,vij/),
1 < 4,7 < k, that exists inG. The subgraph ofj generated from a subset of the nodes

C ={Vi,,Vi,,..., Vi, } is denoted by (C).
6. If (V;,V;) exists inG, we write (V;,V;) € G.

The clustering problem in consideration is as follows. Adfeibjects{x, xo, ..., x,, } are to be grouped
into multiple categories. A symmetric pairwise distandéz;, ;) is given for everyi # j (by default
D(z;,xz;) = 0). A graphG with {x, 9, ...,z,} as nodes is specified. It is assumed @ias connected.
Following the generally accepted heuristics about clirgiemwve aim at dividing the;’s into groups such that
the within group distances between objects are small antdtveeen group distances are large. Moreover,
we require that the subgraph generated frgfa in any cluster is connected. Suppdselusters are formed,
each denoted bgy, k = 1,2, ..., K. ThenG(Cy) is connected for any.

The agglomerative clustering approach attempts to achswall within clustering distances by
recursively merging two existing clusters that yield minim between-cluster distance. The clustering
procedure can be visualized by a tree structure callexadrogram We propose a new way of merging
clusters which ensures connectivity of any cluster at amgllef the clustering hierarchy. In summary,
the algorithm differs from the usual agglomerative clusigrwithout constraints in two ways. First, a
graph recording the connectivity between clusters is eckatcursively after each step of merging. At any
particular iteration, the current clusters are treatedaaen in the graph. We denote the graph at itergtion
by G(®). Second, two clusters can be merged only if they are condecteording to the graph at the current

iteration. Detailed description of the algorithm is asdelk.

1. Let the starting cluster@,io) = {xx}, k = 1,2,...,n, and the number of cluste’8 = n. Denote
the distance between clustdﬁ(cgo),cj(.o)) = D(z;, ;). Here, notationD is used to distinguish the
distance between groups of points from the distance betimearidual points. Construct grapf(®)

on vertices{Clgo), k=1,2,..,n}. Moreover,(CfO),C](.O)) € GO if (z,2;) € G.

2. Atiterationp, p > 0:



(@) Find the paii* < j* such that(CZ(f_l),C](E‘l)) e g1 and

peyM.cr V)= min D ,c ).
(C_(P ),C;-p 1))€g(p—l)

k3

Note that becausg is connectedg cannot be divided into mutually disconnected subgraphs.

Hence, there always exist&nd; such thaI(Ci(p*l),Cj(.p’l)) c glr=1),

(b) Mergec?™" andCJ(fi’*l) into a new clusterc?) = CZ-(ffl) U Cj(ffl).

(c) Retain the other clusters” = ¢V, fori < j*, i # i*, andc? = Cﬁ]l), for
j* < i < K — 1. For brevity of notation, let us use 1 to denote the index of the cluster
at the previous iteratiop — 1 which becomes clusteﬂi(p). Also, definei* 7= ¢*. Fori < i* or
r<i<jtil=d Forjf <i<K-1,i =i+ 1.

(d) Update the graph fro@®~1 to G, G(*) is constructed on verticg® " k = 1,2, ..., K —1}.
For anyi,j # i*, (C{",c{") € g@) if (€r™),c"~V) € W=V If eitheri or j = i, and

without loss of generality, assumie= i*, then(C?,c'?)) € g®) if (Cf?_l),cj(.’;_l)) € g1

i* Vg
or (Cj(%i’*l),cj(.?*l)) e =1 Anillustration of the creation of the new graph will be pided

by a figure momentarily.

(e) Update the between-cluster distances. Foriany i* andj # j*, D(CZ.(p),CJ(.p)) is given
because the two clusters are inherited from the previoustite p — 1. Compute the distances

D(CZ(?),CJ(”)), forall1 < j < K, j # i*. Details on distance updating will be described shortly.

(f) Reduce the number of cluster& — 1 — K.

In Appendix A, we prove that clusters generated by the abtgaithm are guaranteed to be connected
according taG. The update of the graghf?) from G®»—1), as described in Step 2(d), is illustrated in Figure 1.
When two clusters are merged, in the new graph, a third ¢lissteonnected to the merged bigger cluster
if it is connected with either of the component clusters ia thitial graph. The edge between any pair of
unchanged clusters is copied from the initial graph if itséxi The between-cluster distances after merging
can be updated in several ways. Some example formulas anel@dan Appendix B. We call the algorithm

proposed above thegglomerative connectivity constrained clustering (A3C)
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Figure 1: Update of the graph after clusters are merged

3 Image Segmentation

A color image is digitally represented by an array of vectars, 1 < i < m,, 1 < j < m,, wherem,
andm, are the numbers of rows and columns in the image. The vegtoe R? contains the values for
the Red, Green, and Blue components. In image processingftaretransform the color vector to a color
space different than RGB, for instance, LUV, where L is thmilance of the color and U and V are the
chromatic components [7]. It is often believed that the LUp&&e corresponds more directly with human
visual perception.

As explained in Section 1, it is preferable to ensure thatreaded regions in an image are spatially
connected. The A3C algorithm achieves this property bygusingraph constructed based on spatial

adjacency of pixels. We introduce the following termindksy

e 8-connectedPixels with coordinatesiy, j1) and(is, j2) are said to be 8-connected|if — is| < 1

and|j1 —j2| <1

Path a sequence of pixel§(i1, ji), (i2,52), ---, (in, jn)} Such that for anfg < k < n, (i, jx) and

(ik+1,Jk+1) are 8-connected.

Region a subset of pixels from the image.

Connected regianA region is said to be connected if for any two pixélsj) and(i’, j') in the region,

there exists a path linking the two pixels.

Segmentlf an image is divided into several connected regions, eagion is called aegment

8



e Patch If segmentation is performed by agglomerative clusteritagdistinguish from the segments

obtained at the end, we call a segment acquired in the intBateesteps aatch

e Cluster a group of pixels grouped together by a clustering algoritBecause A3C satisfies the graph
connection constraint, clusters generated by this alyoriare connected regions, and hence may be
used interchangeably with patches or segments. Howevéustec generated by other algorithms,

e.g., k-means, may not be a connected region.

We do not obtain segmentation by applying A3C directly toghels of images. Instead, a multi-stage
clustering approach is developed so that both computdtédfieiency and good segmentation are achieved.
First, we apply k-means to over segment an image into smathpa homogeneous in color. Because k-
means does not guarantee clusters are connected regioosnected component operation is applied to
each cluster of k-means to extract usually multiple patcheshis beginning step, the goal is to produce a
sufficiently fine division of the images. K-means is compotally more efficient than the agglomerative
clustering approach because there is no need to computeigmidistances, the complexity of which is in
the order of the square of the number of pixels. Next, A3C @iad in two stages using different definitions
of pairwise distance. At the first stage, the emphasis is agimg visually similar patches. At the second
stage, more sophisticated types of pairwise distances awthanisms for merging are used in order to
achieve a good overall segmentation. The computationali€ogvertheless low because the second stage
starts with significantly fewer patches.

As will be seen from the detailed description below, the seggation algorithm tries to combine
various visual cues possibly exploited in human visual @gtion. Hence, there may seem to be many
tuning parameters. However, for all the images we have stawitested in the experiment section, those
parameters are fixed. To apply this algorithm to generappse color photographs, the parameters do
not need to be tuned. Hence, the segmentation algorithnwgef package provided) should be fairly

straightforward to use in practice.

3.1 Distances

To start the agglomerative clustering, we need to computevise distances between image patches. When

Ward’s clustering is used to update the distance after mgryio clusters, the initial pairwise distance has
9



to be defined in a specific way so that the merging results imnnuim increase of total variation. To update
distances by other schemes, there is no special requireometite definition of the distance. Next, we
describe several types of distances between patches baskffieoent pictorial characteristics. How these

distances are combined in the clustering algorithm will hegl&ned in Section 3.3 and 3.4.

e Color:

Two versions of color-based distances are defined, one fod8velustering, and the other for any
other linkage scheme. We denote the distance used by Wdwnd®ing byD,.,, and that by other
linkage schemes bl.. Given two patchesandy, let the average LUV color vectors for pixels in the
patches be;, y; € R3. Let|| - || denote the Euclidean distance, angn; be the number of pixels in

patchi, j respectively. We also refer to; as the area or size of the patch. Then, we define

n;n;
yj||2.#

Dcw(iaj):Hyi_ "o+ 1
i TN

9

and

De(i.§) = llyi — yill/V3..

e Location: For each patchi, we compute the average coordinates of the pixels in thehpaltet

the average horizontal and vertical coordinates of patoh z; € R?. We defineD,; simply as the

Euclidean distance between the average coordinalgsi,j) = ||z — z;||, and Dy, for Ward’s
clustering: Dy, (i, 7) = ||z — 24|* - n”fjl]

e Edge: We define a distance to reflect the extent of separation bgsedgthe boundary between two
patches. First, Sobel filter [11] is used to compute the graidat every pixel in the image using the
LUV color components individually. We apply the followingid Sobel filters at each pixel to obtain

the horizontal and vertical derivatives (in digitized verg g, andg,,.

-1 0 1 1 2 1
-2 0 2|, 0 0 O
-1 0 1 -1 -2 -1
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The gradient is calculated bQ/Q;% + g2. The combined gradient is the average of the three gradient
values based on LUV components respectively. The raticimat®mbine gradients in all the LUV
components is to increase sensitivity to color variatiome®nay still perceive an edge if the color
changes abruptly, but not the luminance component. For gighboring patchesand;, we compute

the average combined gradient at the boundary pixels lddstveen the two patches. These average
gradient values are scaled to the rangg(ofi] and are used as the edge-based distance between

patches, denoted b¥y..

Balanced partition measure (BPM): This measure is designed to encourage segmentation into
regions with similar sizes in one image. Itis more concemitl the final appearance of segmentation
than the closeness of two patches to be merged, and is inténdbe used under the scenario that all
patches are already substantially different. For instaimcthe second stage of applying A3C, when
patches resulting from the first stage have already achieeewin level of pairwise dissimilarity,

the emphasis is shifted somewhat from merging similar metdio obtaining a visually appealing
segmentation result. Motivated by the observation thatdneyes tend to recognize large patches
of an image at a quick glance, we include BPM as part of theudigt between regions. Because the
combined distance also incorporat@s and D., the effect of BPM is negligible if the edge and color

differences are strong enough to mark out a region.

Let the proportional sizes of a set of clusters{bpe, ps, ..., px }. Thep;’s form a discrete distribution
with > p; = 1. Suppose clustersandj, i < j, are merged and the resulting proportions of the
k — 1 clusters are({p1,p2, ....,px } — {pi,p;}) U{pi + p;}. The BPM of clusters and; is defined as
the L2 norm between the distribution given by the nlew 1 proportions and a uniform distribution.
Specifically, if we denote the — 1 proportions inP (i, j) = ({p1,p2,....pk} — {pi,p;}) U{pi + p;j}
byp;,l=1,...,k—1:

Dypmif) = | 3 (p;—ﬁf.

P €P(i,5)
Jaggedness measure: The jaggedness of the boundary between two neighboringhesets is

measured and used as a distance. We adopt the heuristiotbather or more regular boundaries are

more likely to be true object boundaries, while jagged bauigd are more likely caused by lighting
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and surface texture. First, we define a boundary pixghaggedif in its 8-connected neighborhood,
which contains a total of 9 pixels including itself, 5 or mgoigels are not in the same segment as
this pixel. The rationale is as follows. Consider a pixeltet boundary of two segments. If the two
segments are separated by a smooth curve, at the refinedspatel the smooth curve either passes
through the pixel as a straight line or as a line bended at iked. pSince image pixels locate on a
discretized grid, there are only four directions for a lineai3 x 3 block to take: horizontal, vertical,
45°, —45°. For a bended line with the turning point located at the pdféhterest, there are only three

bending angles#5°, 90°, and135°. We consider bending angle smaller the%° a sharp corner,

@) (h)

which a smooth curve should not bear.

Figure 2: Different separation patterns for a boundary pbétween two segments indicated by filled and
blank squares respectively.

Figure 2 (a)-(d) show the separation of two segments bygstrdine boundaries in four orientations;
Figure 2 (e) shows the one representative casB3&f bending boundary lines (the other cases can
be obtained by reflection); and Figure 2 (f)-(h) show #3¢ and90° bending boundary lines. The
pixel in consideration is always shown at the center ofhe 3 block, therefore referred to as the
center pixel. We see that when the bending line has a shaip,ahg number of pixels in the same
segment as the center pixel is smaller than 5, while for cége), that number is at least 5. If the

number of pixels in the same segment as the center pixel ys2)nith representative cases shown
12



in Figure 2 (i), (j), the center pixel is an end point of a linetuding into the other segment, an
indication of irregular separation between the two segsielnt the cases shown from (a)-(j), within
the 3 x 3 blocks, pixels are connected for the neighboring segmemi/isiby the blank squares. In
some rare cases, the neighboring segment is disconneadeordang to 4-connection) in thg x 3
block, as shown by Figure 2 (k)-(p). To decide whether thearguixel locates on a smooth boundary
requires examination of pixels outside the 3 block. In (k)-(m), examples are shown that the center
pixel resides on a dangling boundary thrusting into the medging segment. On the other hand, in
(n)-(p), the center pixel is on a thin smooth boundary. Topk#le calculation simple, we still use
the “> 5” criterion for these cases. If the pixels represented byfitteal squares in examples (n)-(p)
are actually at the end of a dangling boundary, the jaggedoigthe boundary can be captured by the

non-center pixels.

To summarize, when the two segments are separated by smontbsc zooming in thes x 3
neighborhood of one pixel on the boundary curve, at I&aseighboring pixels are in the same
segment as the former. It is subjective to quantify the l@fejaggedness”. We hereby introduce
a simple test for declaring a boundary pixel as jagdedr more pixels in it} x 3 neighborhood are
in a different segment. To define a measure for the level @fgdgess for two segments denoted’by
andcC;, we find the number of boundary points, (n;), in C; (C;) that are adjacent t6; (C;). Among
thesen; 4 n; points located at the boundary, we count the number of jaggétts, .4, according
to the test described. The measure of jaggedness is

which is also scaled so that the range of values is one.

3.2 Generatethelnitial Pixel Patches

The computational complexity of A3C, as of any other paiavidistance based clustering method, is
guadratic in the number of objects to be clustered. Becausge sizes vary enormously and it is now
common for a digital photo to contain millions of pixels, werform a preparation step to group pixels into

relatively homogeneous small patches before applying 8@ &lgorithm to these patches. Comparing with
13



applying agglomerative clustering directly to the pixdlsis strategy reduces the computation by several
orders of magnitude. Moreover, it makes clustering lessitiea to the size of an image. A high resolution
image with much more pixels than a low resolution image ugubtes not yield significantly more patches
to start with.

The basic idea for generating the patches is to apply k-mgaagering to the color vectors of the pixels.
We gradually increase the number of clusters in k-meangering until the resulting total within-cluster
distance is below a given threshold. By using a small thrielstibe color vectors in the same cluster are
forced to be very close to the cluster average. The pixelfiénsame cluster are not guaranteed to be
connected in the image. We apply the connected componerdtapeto find all the connected components
for every cluster. Each connected component of pixels irséimee cluster becomes a patch.

Itis observed that the sensitivity of human vision to colariation depends on the size of the image area
looked upon. The same amount of change in color over a largariamore obvious than over a smaller one
due to the blurring of the eyes. When an area is small, thisibtueffect makes it difficulty for human eyes
to discern variation. Motivated by this observation, weiglesn iterative procedure to create the patches.
Instead of applying k-means once using a single threshademploy a decreasing sequence of thresholds
0, > 6, > --- > 6;. Apatch acquired at a largg tends to have more color variation. But if it is small
enough, it will not be further divided. In the initial itefah, all the pixels in the image are considered. Let

the collection of pixels at the beginning Be. Fori = 1, ..., [, repeat the following.

1. Apply k-means with threshold; to color vectors of pixels irZ;. That is, the number of clusters in

k-means is the smallest integer such that the resultingageewithin cluster distance is beldy.

2. Find connected components in the image based on therahgstabels generated by k-means. Every

connected component becomes a patch.

3. Atiterationi < I, for every pixel inZ,;, if it locates in a patch with size above threshgldt is put in
Z;11, otherwise excluded. The excluded patches are recorddetilist of final patches. At iteration

1 = [, all the patches are put in the list.

After the connected components are found, some patchedbevitif very small sizes and appear like
pepper and salt noise in the segmented image. We remove ribese patches by an iterative merging

14



procedure. Let the threshold for the smallest allowablelpaize bej. We sort the patches in ascending
order according to their sizes. Let the sorted patcheS((ﬁe Cégg) with sizesS(C(((f))) < S(Cég))) e <

S(C(g) ). SupposeS(C((f))) < 4. In thetth iteration, starting front = 1, do the following.

(ko)

1. Find all the patches that are neighboriﬁgl) and compute the color based distargg between
C((Sl) and each of its neighboring patch. Me@é;“ with the patch yielding the smallefl,.

2. Sort in ascending order the new set of patches. Denoteotiedsnew patches b&]((?) Cé,?t). If

S(Cg))) < 4, lett + 1 — t and go to step 1. Otherwise, stop.

3.3 First-stage A3C

After the initial patches are obtained, we apply the A3C atgm to merge patches that are connected with
each other. Considering each patch as a node, the constrajraph is constructed based on the spatial
adjacency of the patches. Specifically, any two patchesareected if there exist two pixels, one from
each patch, that are 8-connected neighbors.

Since the initial clusters taken by the agglomerative eliisy algorithm are patches rather than single
pixels, the cluster sizes are the numbers of pixels in thehest For patclhhandj, their pairwise distance is

a combination of color, edge, and location based distances:

Di(i. ) = \/ MeDewli. ) + N3Dus(i.4) + AaDel(i. ) -

The three types of distances are updated separafely, and D;,, are updated by the Ward’s clustering
scheme, whileD, is updated by average linkagg;'s are pre-chosen scaling factors adjusting the relative

importance of different kinds of distances.

3.4 Second-stage A3C

The first-stage clustering aims at merging patches that isteNy similar in a local sense— the choice
of merging only depends on the pairwise distances. At therskstage, the pairwise similarity is not
the dominant factor in merging because it is assumed th#halpatches resulting from the first stage are

sufficiently distinct. More emphasis is put on achieving adjoverall segmentation. We incorporate the
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balanced partition measurey,,, into the pairwise distance between patches. Notefhgt, (i, j) depends
on the proportional sizes of all the clusters after mergamy] is not determined by patéland; alone. The

distance used in the second stage merging is:

Dg(i,j) = )‘ch(iaj) + )\jangag(ivj) + )‘bmebpm(iaj) + )\eDe(iaj) .

Moreover, we directly eliminate patches with too small siby merging them with sufficiently large
neighboring patches. Suppose the second stage A3C st#ntévypatches and targets to merge them into
N patches. We set two thresholds,= % x 5%, €3 = % x 20%, wherem, andm,. are the number

of pixels in a row or column of the image. We insert the follagisteps in the merging procedure of A3C

to avoid generating very small patches.

1. Forthe initialN; patches, if any is of size smaller than merge it with a neighboring patch. Similarly
as in agglomerative clustering, the merging is performedingvely with pairwise distances updated
after each step. If there are several small patches thattodesl merged with neighboring patches,
the one with the minimum distance to a neighbor is processsid Repeat the merging until all the

patches are of size above SupposeV; patches are left.

2. Apply A3C to theN| patches. After each merging in A3C, check whether the tizel af the largest
N> patches is abover,m. — €. If S0, only perform future merging between the small pascaed

those among théV, largest patches. Otherwise, perform the next step of A3C.

4 Experiments

The images we experimented with are all scale@i6 x 384 or 384 x 256 pixels. To acquire the initial
patches, the K-means clustering is applied 4 times withstiolels equally space betwe&0 and 3600.
The number of initial patches created for an image variexlyidepending on the amount of details in
the image. For instance, for a group 1df0 photos of closeup shots of roses, the average number dliniti
patches i210, while for a group ofl00 photos of harbor scenes, the averagé3s. As aforementioned,

some patches generated by k-means are very small and arbetb#ato bigger patches via a hoise removal
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step described in Section 3.2. In our experiments, we sdhtleshold for the size of a noisy patch 16.

The average number of noisy patches for the rose groa@3isvhile for the harbor group i¢410.

4.1 Illustration for Step by Step Segmentation

As explained in Section 3.2, by applying k-means with grélgludecreasing thresholds and excluding
sufficiently small patches formed along the way from furttiesion, we can reduce the sensitivity to color
variation in small areas. Figure 3 shows an example imagetamao zoomed-in areas. The segmentation
results obtained using our algorithm and one executionmians with threshold00 (same as the smallest
threshold used in our algorithm) are compared. As we cancsgeglgorithm generates better segmentation
results, while one execution of k-means creates more n@igshps, many containing only a single pixel.

In Figure 4, the step by step segmentation results for an pkeaimage is shown. After the initial step,
447 patches are obtained. The first stage merging reduces thbamuwhsegments to 22. In the second

stage, the segmentation results obtained with severah givebers of segments are shown.

Figure 3: Compare segmentation by multi-iteration k-meamd a single pass k-means. The two eyes of
the Santa in the original images are zoomed in. The segn@mtasults by the two methods are compared.
The middle row is based on multi-iteration k-means and thtoborow on single pass k-means.
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Figure 4. Segmentation results for an example image. (&jinat; (b): segmented patches via the initial
step; (c): segmentation after the first stage merging;fjdy€sults after the second stage merging with 12,
6, and 3 segments obtained respectively.
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4.2 Comparison with K-means

We compare our segmentation algorithm to k-means followeddnnected component extraction. For
brevity, we refer to our algorithm as Multistage A3C (MS-Ad@kcause the segmentation process includes
k-means and A3C conducted through several phases. Resuksrhe example images are provided in
Figure 5. We see that for most images, the segments obtainBt5kA3C correspond with objects clearly
better than those by k-means. Moreover, k-means based s&gioe has the issue that we cannot precisely
control the number of connected components obtained anitheT® arrive at the results shown in Figure 5,
for every image, we gradually increased the number of dlgstek-means; and at each number, recorded
the final number of segments formed after extracting comaecomponents and removing noise. Among
these segmentation results, we selected the one with thberushsegments closest to the targeted number
chosen beforehand for that image.

Figure 6 shows the number of segments generated by exgjaminmnected components based on the
clustering result of k-means. The plot on the left shows thenloer of segments before removing small
noisy patches, while that on the right shows the number.affée see that when k-means yields only 2
clusters, for three out of the five example images, the nurnbsegments is above 150. The number of
segments increases quickly when the number of clustersnie&ns increases gradually from 2 to 10. If the
noise removal procedure is applied, the number of segmeuiimstically reduced. However, the number of
segments still grows much faster than the number of cluskgsinstance, when the number of clusters in
k-means increases one at a time from 2 to 5, the average nwhbegments obtained for the five images
increases fronT.4, to 13, 17.6, and29.8. In summary, the k-means approach lacks a mechanism forgett
the number of segments, even at a moderate granularityntitisare to encounter an image for which the

minimum number of segments producible by the k-means apprizastill large.

4.3 Comparison with Graph Partitioning M ethods

We compare our segmentation results with that given by themalized cut image segmentation
algorithm [25], an extremely popular segmentation tooldusg researchers, which is referred to in short as
Ncut hereafter. The Matlab package provided at http://meisaupenn.edufjshi/software/ is used. We

also compare our algorithm with a recently developed algorj called OWT-UCM [1], the software
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Figure 5: Segmentation result for example images. Frontdefght: column 1: original image; column 2:
segmentation results by MS-A3C; column 3: Ncut; column 4: DMWCM; column 5: k-means.
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Figure 6: Number of segments generated based on k-meansririgsusing different numbers of clusters
for five example images. Left: before removing noisy patchies number ranges between 9 and 3000.
Right: after removing noisy patches, the number rangesdmivd and 100.

provided at http://www.eecs.berkeley.edu/ResearcigBts/CS/vision/grouping/. The gpb detector in the
OWT-UCM software is used to obtain the contours. The OWT-U@lgbrithm aims at improving the
segmentation accuracy of Ncut, but not the computatione¢dpAlthough Ncut does not directly enforce
connected regions, in practice, it is very rare for discabe@ regions to appear. One possible reason is that
location proximity between pixels is incorporated into gimilarity measure. Hence, as we will see from
the experimental results, the main advantages of our #fgorover Ncut are higher accuracy and faster
computation. Although OWT-UCM also generates segmentsrbiydiver-segmenting the image and then
iteratively merging adjacent regions, the over-segmamattep itself is based on spectral graph partitioning
and is thus computationally intensive. Instead of expigitbver-segmentation to achieve scalability as in
our algorithm, over-segmentation in OWT-UCM is utilizedaeoid breaking a large region incorrectly into
smaller pieces, as is often done by Ncut. The region mergif@WT-UCM at the second step exploits a
graph-based method, where the graph records the spatdesmtly of regions. This is different from our
A3C algorithm with several types of linkage schemes.

The Ncut algorithm requires a pre-given number of segmentsur algorithm, a user can either specify
the number of segments, or let the algorithm automaticdityose the number of segments. If not specified,
the number of segments is set to be one third of the numbertdfiga created after the first stage merging.

For many images we experimented with, the automaticallgehmumber of segments is reasonable, and we
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accepted those numbers. For afew dozens of images with-gfoskots of roses and dogs, the automatically
chosen numbers tend to be large because the close-up oljebis images have great variation within
themselves. We thus manually selected the number of segmEat the rose images, we set the number
of segments to 5. For the dog images, if the background isivela homogeneous, we set the number of
segments to the number of dogs in the picture plus 1 (to a¢douthe background); otherwise, a few more
segments are added. For the Ncut segmentation results, edletlus same number of segments for every
image as that in our algorithm. For the OWT-UCM method, thenber of segments cannot be directly
specified. It is determined by a threshold applied to thengtielevels of contours. In our experiments, we
exhaustively searched through all the possible valueseofiiteshold and recorded the resulting number of
segments. We chose the result with the number of segmenthimgthat used by our algorithm. For more
than95% of the images we experimented with, the number of segmentbeaxactly matched. For the rest
of the images, we let the number of segments obtained by OWWMBe larger than that of our algorithm
by one.

Segmentation results for 20 example images are comparedungs. We see that in general, the MS-
A3C and OWT-UCM algorithms generate segments that follojgaitbboundaries more faithfully than Ncut.
Ncut focuses on achieving a good global separation, and @ft®res the boundaries of objects. As a result,
segments generated often contain fragments of multiplectdbpr objects and background. The boundaries
by OWT-UCM tend to be smoother than those by MS-A3C. Howed®v,T-UCM appears to be more likely
to combine several objects into one region and in the meamtiingenerate tiny regions of little importance
in the images.

To numerically compare the three algorithms, we manualgessed the segmentation results on 220
images. It is well known that evaluation of segmentatiomisvitably subjective because of the lack of
ground truth. We adopt two strategies in our scoring schemfgch is significantly more objective than
eyeballing the results. First, a score for segmentatioriityjuia given to every segmented region rather
than a whole image so that the evaluation process is brokenriore manageable smaller tasks. Second,
every segment is categorized into seven types with cleanitiefis. We believe that categorization can be
conducted more decisively than assigning numerical saresrding to subjective impression. Scores can

then be given to each category to yield a numerical asses$orazach image. One also has the freedom to

22



vary the scores to better suit his own judgment of qualityhaitt repeating the manual evaluation process.

Definitions for the seven types of segmented regions areitegdbelow.

1. Typea: The segment accurately corresponds to an object. Theamcisrup to the allowed resolution
of the image. For instance, in Ncut, because the images aledsgown, the segmentation boundaries
appear crude when scaled back to the original resolutionstiVeonsider a segment accurate as long

as the boundary roughly follows the object boundary.

2. Typeb: The segment is a portion of an object, but close to the erfity instance, a flower with a

small portion (e.g., visually belo@0%) of the petals missing.
3. Typec: The segment is a portion of an object, but not close to thigyent
4. Typed: The majority (visually abov80%) of the segment is one complete object.
5. Typee: The segment is a combination of several objects.
6. Typef: The segment contains a complete object and parts of otlectsb

7. Type g: The segment contains parts from several different objectbackground. This type is

considered the worst scenario for a segment.

For the 220 images, the total number of segments in each$yljstdd Table 1. The table shows that for
MS-A3C, typea andc dominate, with considerably more typewhile for Ncut, typea, ¢, andg dominate,
with considerably more type thang anda, and more typgy thana. OWT-UCM performs much closer
to MS-A3C than Ncut. The number of typesegments is nearly the same as that by MS-A3C. As with
MS-A3C, typea andc also dominate. However, the number of typeegments by OWT-UCM is smaller
than that by MS-A3C, while the number of typdy OWT-UCM is larger than by MS-A3C.

To summarize the results, we assign a score for each typehigher the score is, the better the segment.
One set of scores we use for type are: (a, 5), (b,4), (¢, 3), (d,4), (e,3), (f,2), (g,1). The average scores
for the images under this score set (set 1) are shown in Tatlevk simplify the scores and assigrto a, 1
to g, and3 to every other types (set 2), the average scores vary gligiglshown also in Table 1. MS-A3C

achieves on average one point higher than Ncut under batho$stores, and slightly higher scores than
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are compared in Figure 7.

OWT-UCM. The histograms for the scores (under score set )eo220 images using the three algorithms

Type a b c dlel| f| g Ave. Ave.
(score set 1) (score set 2

MS-A3C | 48799 |376|71|31|47| 33 3.91 3.82

Ncut 209 | 42| 472 | 46| 26 | 81 | 267 2.84 2.85

OWT-UCM | 407 | 57 | 447 | 51|84 | 70| 35 3.71 3.69

Table 1: Segmentation results for MS-A3C, Ncut, OWT-UCM

Figure 7: Histograms for the scores of the 220 images. Le®-ABC. Middle: Ncut. Right: OWT-UCM.

Ncut and OWT-UCM are both computationally more intensivantiMS-A3C. For OWT-UCM, the
majority of the computation time is spent on over-segmendin image in the first step. For Ncut, to acquire
the segmentation of an image in a relatively short time, iesagre scaled to a size with the maximum
dimension no greater than 160 pixels. For OWT-UCM and MS-ABE original images with size 256x384
(or 384x256) are used. The average running time for Ncut gonsait any of the 220 shrunken images is
21.8 seconds on a PC with 2.8 GHz CPU cycles. The average runmmgfor OWT-UCM to segment
an original image i808.7 seconds on 2.8 GHz CPU. MS-A3C completes the segmentatian ofiginal
image in8 seconds on average on a PC with 3.4 GHz CPU cycles. If we dotineCPU cycles to the
equivalence of 2.8 GHz, the average segmentation time ghtp¥.8 seconds. In all the cases, the time
to load the image into the computer is excluded. For OWT-U@id,time to search for a proper threshold
that yields a desired number of segments is excluded alththegtime is negligible comparing with that for
over-segmentation. We see that Ncut requires more thare tofithe time to segment an image shrunken
more than half both horizontally and vertically than MS-A3thile OWT-UCM, operating on images with

the original sizes, requires more than thirty times longeet
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5 Conclusions and Discussion

In this paper, we have developed a new image segmentatiamitalg that combines the strengths of
k-means and A3C clustering to achieve fast and accurate esggtion. A software package for this
algorithm is provided abttp://www.stat.psu.edufialimsa3c A set of features that take into account
color variation, edge separation, and global characiesistre developed using various statistics computed
from a neighborhood of pixels. Experimental results shoat tS-A3C has apparent advantages over
existing methods such as k-means, Ncut, and OWT-UCM in tefrasgmentation accuracy, computational
complexity, and flexibility with setting the number of segne

For a task as challenging as image segmentation, a diregtiplof a certain clustering method is
insufficient to meet the demands of both speed and qualityma#uvisual perception of images remains
largely a mystery. The method developed here attempts ttweamultiple lines of heuristics about the
process. The ideas may appear intuitive rather than theakebut this simply reflects the complexity of
the human cognition. The current work aims primarily on aglmg good segmentation rather than theories
about clustering and is thus in this sense an applicatiod ¢aibeit a very difficult one). As an application,
our work exemplifies the power of integrating several clistge methods into the design of a coherent
system. In another word, clustering methods are viewedemsagits for design, which are to be fitted into a
system rather than to be selected as a system.

It is found that distortion of an image due to compressionjristance, the JPEG compression scheme,
causes jagged boundaries or regions with thin danglingspaihese problems can be alleviated by
performing segmentation on resolution reduced imagesfaéts resulting from compression are suppressed
at the lower resolution due to the smoothing effect. The ideamoothing before segmenting noisy
images has been investigated in the literature, e.g., sgigtien of microarray images [22, 23]. We
found that applying our algorithm to smoothed images at thigiral resolution actually yields worse
results. The reason is that the edges are obscured aftertlingno However, by shrinking the image
to a smaller size, sensitivity to artifacts is reduced withsuffering the loss of prominent edges. When
we convert the segmentation result on the shrunken imagde toathe original size, a simple expansion
will lead to blocky boundaries. Therefore, we developed d@hoe that attains refined boundaries at the

higher resolution by comparing pixels along the boundanéh pixels inside the segmented regions. If
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segmentation is performed on an image subsampled seveddlitiens down, the boundary refinement is
iteratively conducted through the resolutions, each ii@naraising the resolution of the segmented regions
by only one level. This technique of gradually refining segted regions acquired in a lower resolution
can also be used for the mere purpose of smoothing the segtioanboundaries. Suppose segmentation is
obtained at a high resolution. We can subsample the segthezg®ons to a lower resolution. Because of
jagged boundaries, small portions of a region may be brolexy drom the main part. These small broken
pieces can be removed. Then when we convert the segmentainto the original resolution using
the aforementioned technique, we obtain regions with shewvdioundaries. In our segmentation software
package, we implemented the function to segment an imagéoates resolution and then to convert the
result back to the original resolution as well as the furctio smooth segmentation boundaries. We do not
show examples in this paper due to the limitation of spacethmufunctions are provided in the software
package which is available to the public.

One direction of future work is to enhance the computatiaifitiency of the algorithm. The amount
of computation required by any basic bottom-up clusterireghad grows quadratically with the number of
objects to be clustered, hindering scalability. A top-dasurstering approach is advantageous in this sense
because not all the pairwise distances between object®eaded. The computational complexity is usually
linear in both the number of objects and the number of clasté@ihe computational load of A3C may be
lower than quadratic although it is a bottom-up approachabse the constraining graph may be sparse,
allowing only certain pairs of objects to be grouped. Howetlgs is only true under the assumption that
the graph construction itself is not included in the compata which may not always be so in practice. In
our current work, to reduce computation, we use k-meansp-adsvn approach, to generate an initial set
of objects before applying A3C. The number of patches riegufrom k-means is much smaller than the
number of pixels in an image. As a general strategy to redacgatation, we can also consider dividing the
original set of objects into several groups using a top-dapproach, and then restricting the agglomerative
clustering to objects within the same group or objects withfew similar groups. After a certain number of
merging steps, the number of clusters left will be reducetivalue small enough for applying agglomerative

clustering at the full scale.
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Appendix A

We now prove that the agglomerative algorithm in Section Begates clusters satisfying the graph
connectivity constraint. Lefxy,...,x,} be the set of objects to be clustered. The graph imposecd ’sn
is G. The A3C algorithm generates a sequence of clusteringtseslitially, every object is one cluster
C,EO) = {xr}, k = 1,2,...,n. At each iteration, the number of clusters reduces by onetaltiee merge of
two clusters. Let the clusters formed at iteratipbhe {C%p), ...,C,(Lp_)p}, p=1,2..n—1. Agraphg® is
formed on the node@,ip)’s recursively according to the description in the algarith

We first prove the following lemma.

Lemma: If (C,c?)) € G, then there exist; € C\”) anda; € C*) such that(z;, ;) € G.

Proof: We prove by induction. Whep = 0, sinceC,E,O) = {1}, this is true by construction. Suppose

the statement is true far. We prove it is also true fop + 1.

Considerc "™ andc™ with (¢, ¢V e gi+D), Either of the following two cases occurs.

1. 1If C,(fﬂ) = C,Ef? and C,Ef,’“) = C,Ef,’%, that is, both clusters are inherited directly from the jpres
iteration, then(C,iﬁ),C,Ef,”%) e G® according to the construction ¢f?+1) from G»). Hence, there

existz; € ¢}Y) = c"" andz; € ¢f) = ¢ such thatz;, z) € G.

2. Now consider the other case. Without loss of general'ﬂ;ﬁumeclip“) is merged fromC,E,p) and
ek < 1, while ¢t = ¢l it (¢, cY) e gD, then(c” ) € GW) or
(CZ(P)’C]E:Z/’%) c g(p).

(@) If (€. c)) € G, then there exist; € ¢} < ¢V andx; € ¢ = ¢/ such that
(.I‘Z‘,Zb‘j) € g
(b) If (€7, c)) € G, then there exist; € ¢ ¢V anda; e ) = ¢! such that

(.Ti,l‘j) €q.

In summary, if(CP™, ¢y e g+, then there exist; € CPT andz; € ¢P™ such that

(.Ti,l‘j) € q.

Hence, we have proved that the statement is true forl, and thus true forany =1,....n — 1.

Next, we prove the following proposition.
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Proposition: Foranyp =1,...n—1,1 <k <n —p, C,(f) is connected according tp.
Proof: We again prove by induction. When= 0, sinceclio) contains onlyzxy, C,io) is connected by
construction. Suppose the proposition holds;fovWe prove it also holds fgs+ 1. The following two cases

apply toC* ™.

1. 1fc™) = ¢, thatis,c{”"" is inherited from the previous iteration, by the assumptigfi*" is

connected according @.
2. 1t "™ is merged fronC?) andc®, k < 1, then

(a) BothC'” andc” are connected according &

() (¥ ,c'”)) € G since the two cannot be merged otherwise.

According to the lemma, there exisy < C,(f) andz; € Cl(p) such that(z;, z;/) € G. Consider any

(p+1)
k

xi, x5 €C . Either of the following two cases occurs.

(a) Bothz; andz; belong toC,ﬁp) (or Cl(p)). Because the proposition holds gtz; andz; are

connected irg.

(b) z; belongs to:’,(f’), while z; belongs to:’l(p) (or the other way around without loss of generality).
SinceC,Ef’) is connected, there exists a path betwegandz,,. Similarly, sinceCl(p) is connected,
there exists a path between andz ;. Becauséz;,z;) € G, a path betweem; andz; can be
constructed frome; to x;/, to x,, to z;. Thusz; andx; are connected by. Therefore,C,(f“)

is connected by.

In summary, we have proved thé.‘;&p) is connected according tg, for anyp = 1,....,n — 1,

1<k<n-—p.

Appendix B

Suppose clustef,. andC, are merged into a new clustéy. LetC, be any other cluster. The following list
provides several schemes of updating the distdn@@, C;,) from D(C,,Ci) andD(Cs,Cy). Let the size of

clusterC,, Cs, Cx, ben,., ns, ni correspondingly.
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Single linkage
D(Ct,Cy) = min(D(Cy, Cy), D(Cs, Cy))

Complete linkage

D(Ct, Ck) = HlaX(D(Cr,Ck)a D(Csv Ck))

Average linkage

Ny Ng
D = D T D S5
(Ct,Cr) —— (Cr,Cr) + ——— (Cs,Cr)
e Ward’s clustering:
_ e Mot S
D(Cy,Ci) = p— nkD(C’"’C’“) + S nkD(CS,Ck) E— nkD(C’"’CS)
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