1. Consider \(\{W(t), t \geq 0\} \), a standard Brownian motion process.
 (a) Find the conditional distribution of \(W(s) \mid W(t_1) = A, W(t_2) = B \), where \(0 < t_1 < s < t_2 \).
 (b) Find \(E(W(t_1)W(t_2)W(t_3)) \) where \(0 < t_1 < t_2 < t_3 \).

2. Let \(\{X(t), t \geq 0\} \) be a Brownian motion with drift coefficient \(\mu \) and variance parameter \(\sigma^2 \).
 Find the joint distribution of \(X(s), X(t) \) where \(0 < s < t \).

3. Distinguishing between Markov processes and martingales:
 (a) Provide one example of a martingale that is not a Markov process and show why this is the case.
 (b) Provide one example of a Markov process that is not a martingale and show why this is the case.

4. Prove the following result: If \(X_i, i \geq 1 \), are independent and identically distributed (iid) and if \(N \) is a bounded stopping time for \(X_1, X_2, \ldots \) with \(E(N) < \infty \), then
 \[E \left(\sum_{i=1}^{N} X_i \right) = E(N)E(X) \]
 Hint: consider the process \(Z_n = \sum_{i=1}^{n} (X_i - \mu) \).

5. Let \(\{X(t), t > 0\} \) be standard Brownian motion. Prove that the process \(\{M(t), t > 0\} \) where \(M(t) = \exp(\lambda X(t) - \frac{1}{2} \lambda^2 t) \), is a martingale.

6. Simulate 3 realizations for each of the following processes on the interval \([0, 10]\) on 20 equally spaced points on the interval.
 (a) Simulate 3 realizations of standard Brownian motion.
 (b) Simulate 3 realizations of Brownian motion with variance parameter \(\mu = 0, \sigma^2 = 2 \).
 (c) Simulate 3 realizations of Brownian motion with parameters \(\sigma^2 = 2, \mu = 3 \).
 Overlay the 3 realizations for each process on the same plot. Hence you should submit 3 clearly labeled plots. You do not have to submit your code for this problem but you have to provide pseudocode for each simulation algorithm above.

7. Consider a simple symmetric random walk, \(S_n = \sum_{i=0}^{n} X_i \) where \(X_1, X_2, \ldots \) are iid with \(P(X_i = 1) = 1/2 = P(X_i = -1) \) and define a random time, \(T \in [0, 3] \) at which \(S_n \) takes on its maximum value \(\max\{S_n : 0 \leq n \leq 3\} \). If \(S_n \) takes its maximum value more than once, assume \(T \) is the last such time.
 (a) Show analytically that \(E(X_T) > 0 \) and hence \(E(X_T) \neq E(X_0) \). This therefore results in an “unfair game”, as discussed in class.
 (b) Find the expected value of \(T \) using Monte Carlo. Write pseudocode for the algorithm and report your estimate along with the Monte Carlo sample size and Monte Carlo standard error.