
HONDA-TATE THEOREM FOR ELLIPTIC CURVES
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1. Introduction

These are the notes from a reading seminar for graduate students that I organised at Penn
State during the 2011-12 academic year.

Tate’s isogeny theorem over finite fields, and the related Honda-Tate theorem, are important
results in arithmetic geometry. The original papers by Tate [4], [5] prove these theorems for
general abelian varieties, so, even if one is primarily interested in the case of elliptic curves,
understanding the proofs requires some knowledge of the theory of abelian varieties. The goal
of the seminar was to review some of the material in [1] and [2] necessary for understanding
the statements of Tate isogeny theorem and Honda-Tate theorem for elliptic curves, and then
to prove these theorems using only tools from the theory of elliptic curves.

2. Statement of Honda-Tate theorem for abelian varieties

Unless otherwise is indicated k will be a field of characteristic p with q = pa elements.
Given a simple abelian variety A defined over k, we have the Frobenius endomorphism πA ∈
Endk(A) relative to k. The ring Endk(A) is an order in the finite dimensional division algebra
Endk(A) ⊗Z Q. Hence πA can be considered as an algebraic integer. It is known that the
absolute value |φ(πA)| is equal to q1/2 for any embedding φ : Q(πA)→ C.

Definition 2.1. A q-Weil number is an algebraic integer π such that |φ(π)| = q1/2 for any
embedding φ : Q(π)→ C. We say that two such numbers are conjugate if they are conjugate
over Q, i.e., there exists an isomorphism Q(π1)→ Q(π2) which maps π1 to π2.

Theorem 2.2 (Honda-Tate). Assume A is a simple abelian variety over k, and let

F = Q(πA) ⊂ D = Endk(A)⊗Z Q.
(1) The map A → πA gives a bijection between the k-isogeny classes of simple abelian

varieties over k and the conjugacy classes of q-Weil numbers.
(2) D is a division algebra with center F . The algebra D does not split at any real place

of F , splits at every finite place prime to p, and its invariant at a place p over p is
given by the formula

invp(D) ≡ ordp(πA)

ordp(q)
[Fp : Qp] = ordp(πA)

fp
a

(mod Z),
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where Fp is the completion of F at p and fp is the degree of residue field extension at
p.

(3) 2 dim(A) = [D : F ]
1
2 [F : Q].

Remark 2.3. Note that Part (2) of the theorem implies that up to isomorphism D is uniquely
determined by πA, i.e., the Frobenius endomorphism determines the whole endomorphism
algebra.

3. Tate isogeny theorem for elliptic curves

Denote G = Gal(k̄/k). Let E1 and E2 be two elliptic curves over k. It is easy to see that
the natural map

Homk(E1, E2)→ HomG(T`(E1), T`(E2))

is injective. In fact, by Theorem III.7.4 in [1], this map remains injective after tensoring the
left hand side with Z`:
(3.1) Homk(E1, E2)⊗Z Z` → HomG(T`(E1), T`(E2)).

Remark 3.1. The injectivity of (3.1) is not an automatic consequence of the flatness of Z`
over Z, since the right hand side is considered as a Z`-module (its rank as a Z-module is
infinite). In fact, it is easy to construct an injective Z-module homomorphism Zn → Z` for
any n ≥ 2 (just map the generators of Zn to Z-linearly independent elements in Z`), which
clearly cannot remain injective after tensoring Zn with Z`.

Lemma 3.2. The cokernel of (3.1) is torsion-free.

Proof. This is implicit in the proof of Theorem III.7.4 in [1]. More precisely, suppose φ ∈
Homk(E1, E2) ⊗ Z` is such that φ` = `ϕ` for some ϕ` ∈ HomG(T`(E1), T`(E2)). Let M ⊂
Endk(E1, E2) be some finitely generated subgroup with the property that φ ∈M ⊗ Z`. Then
Mdiv is finitely generated and free. Let

ψ1, . . . , ψt ∈ Homk(E1, E2)

be a basis for Mdiv, and write

φ = α1ψ1 + · · ·+ αtψt with α1, . . . , αt ∈ Z`.
Let a1, . . . , at ∈ Z be such that αi ≡ ai (mod `). The assumption φ` = `ϕ` implies that the

isogeny
ψ = [a1] ◦ ψ1 + · · ·+ [at] ◦ ψt

annihilates E1[`]. This then implies that ` must divide all ai, and thus also all αi. But that
implies ϕ` is in the image of (3.1). �

The previous lemma shows that to prove that (3.1) is an isomorphism it is enough to prove
that

(3.2) Homk(E1, E2)⊗Z Q` → HomG(V`(E1), V`(E2))

is an isomorphism, where V`(E) := T`(E)⊗Z`
Q`.
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Theorem 3.3. The map (3.2) is an isomorphism.

Proof. First, assume Homk(E1, E2) 6= 0, i.e., the elliptic curves in question are isogenous over
k. The existence of an isogeny implies that the dimension of Homk(E1, E2)⊗Z Q` as a vector
space over Q` is equal to the dimension of Endk(E1)⊗ZQ`. Similarly for HomG(V`(E1), V`(E2)).
Thus, it is enough to prove that

dimQ`
(Endk(E)⊗Q`) ≥ dimQ`

(EndG(V`(E)).

Let π be the Frobenius endomorphism of E. Let F = Q(π) and D = Endk(E) ⊗ Q. The
Frobenius satisfies the quadratic equation (see Theorem V.2.3.1 in [1])

x2 − tx+ q = 0,

where t = Tr(π`) = q+ 1−#E(Fq). The field F is in the center of the division algebra D. In
particular, π is semi-simple, so its image π` is also semi-simple as an element of EndQ`

(V`(E)).
If [F : Q] = 2, then dimD ⊗ Q` ≥ 2 and π` is not a scalar. On the other hand, since G

is topologically generated by the Frobenius automorphism, EndG(V`(E)) is the centralizer of
Q`(π`) in End(V`(E)) ∼= M2(Q`). Obviously this centralizer has dimension at least 2, as it
contains Q`(π`). But the dimension of a centralizer of a division algebra in the matrix algebra
M2 is a divisor of 4, thus the centralizer has dimension either 2 or 4. The latter case is not
possible, since otherwise Q`(π`) is in the center of M2(Q`), which would imply that π` is a
scalar.

Now suppose F = Q, i.e., π ∈ Z. This implies π̂ = π and π2 = [q]. In particular, π̂
is not separable and a is even. Moreover, Endk(E) = Endk̄(E) since an endomorphism is
defined over k if and only if it commutes with π. We conclude that E is supersingular and
dimD ⊗Q` = 4 = dim End(V`(E)) ≥ dim EndG(V`(E)), cf. [1, Thm. 3.1].

It remains to show that Homk(E1, E2) 6= 0 when HomG(V`(E1), V`(E2)) 6= 0. It is enough
to prove this after passing to an arbitrary finite extension k′ of k. Indeed, if

Homk′(E1, E2)⊗Q`
∼= HomG′(V`(E1), V`(E2)),

then the isomorphism over k results by taking Gal(k′/k)-invariants of both sides. Using
Propositions 4.1 and 4.2, we see that we can assume that either both E1 and E2 are ordinary
and all isogenies between them are defined over k, or that both E1 and E2 are supersingular
with all their endomorphisms and all isogenies between them defined over k. Since π` is
semi-simple, the existence of non-trivial homomorphism V`(E1) → V`(E2) of G-modules is
equivalent to π` having the same characteristic polynomial as a linear operator acting on
V`(E1) and V`(E2). Let πi be the Frobenius endomorphism of Ei, i = 1, 2, and Fi = Q(πi).
We see that the existence of non-trivial homomorphism V`(E1) → V`(E2) implies F1

∼= F2.
Identify these fields and denote it by F .

Suppose E1 and E2 are ordinary. Then [F : Q] = 2. By Deuring’s Lifting Theorem
(Theorem 14, page 184 [3]) there exist elliptic curves Ẽ1 and Ẽ2 defined over a number field
K, having CM by F , and reducing to E1 and E2 modulo a prime P lying above p. On the
other hand, two elliptic curves over C having CM by the same imaginary quadratic field are
isogenous. Indeed, the lattices of such curves are in F , hence can be scaled into one another
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by multiplication by an appropriate complex number (see Theorem VI.4.1 in [1]). Thus, there
is an isogeny α : Ẽ1 → Ẽ2 defined over a finite extension of K. The existence of Néron models
[2] implies that modulo P we get an isogeny ᾱ : E1 → E2, which by assumption is defined
over k.

Now suppose E1 and E2 are supersingular. Then F = Q and the endomorphism algebras of
both curves is the quaternion algebra D ramified at p and ∞. Let L be any field which splits
D. Such L is imaginary quadratic and p does not split in L. By Deuring’s Lifting Theorem
there exist elliptic curves Ẽ1 and Ẽ2 defined over a number field K, having CM by L, and
reducing to E1 and E2 modulo a prime P lying above p. Now repeat the earlier argument. �

Remark 3.4. Tate’s original approach [4] reduces the proof of the isomorphism (3.1) to the case
of endomorphisms (of abelian varieties) by considering the k-endomorphisms of the surface
E1 × E2.

Corollary 3.5. If [F : Q] = 2, then D = Q(π). If F = Q, then a is even and D is a
quaternion algebra. In particular, a supersingular curve defined over k with a odd cannot
have all its endomorphisms defined over k.

Corollary 3.6. The following are equivalent:

(1) E1 and E2 are isogenous over k.
(2) V`(E1) ∼= V`(E2) as G-modules.
(3) V`(E1) ∼= V`(E2) as Q`[π`]-modules.
(4) The characteristic polynomial of π` acting on V`(E1) is the same as the characteristic

polynomial of π` acting on V`(E2).
(5) Tr(π`|V`(E1)) = Tr(π`|V`(E2)).
(6) #E1(k) = #E2(k).

Proof. (1)⇔(2) is a consequence of Tate’s isomorphism. (2)⇔(3) because G is topologically
generated by π. (3)⇔(4) because π` is semi-simple. (4)⇔(5) because the characteristic
polynomial is x2 − Tr(π`)x+ q. (5)⇔(6) because #E(k) = q + 1− Tr(π`). �

4. Honda-Tate theorem for elliptic curves

Corollary 3.6 implies that to each k-isogeny class of elliptic curves we can associated a
well-defined integer Tr(π`) of absolute value ≤ 2

√
q, and the resulting map

HT : {k-isogeny classes of elliptic curves} → {integers in [−2
√
q, 2
√
q]}

is injective. Note that Tr(π`) uniquely determines the Galois conjugacy class of the q-Weil
number of E, hence this injectivity is part of the Honda-Tate theorem 2.2. The problem now
is to determine the image of HT. We need some preliminary results.

Proposition 4.1. E is supersingular if and only if πn ∈ Q for some n ≥ 1.

Proof. E is supersingular if and only if D̄ := Endk̄(E)⊗Q is a quaternion algebra; see Theorem
V.3.1 in [1]. Let k′ = Fqn be an extension of k where all endomorphism of E are defined. The
Frobenius of E over k′ is πn. If πn ∈ Q, then D̄ is a quaternion algebra by Corollary 3.5.
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Conversely, suppose D̄ is a quaternion algebra. The center of D̄ is Q. On the other hand, πn

is in the center of D̄. �

Proposition 4.2. The following are equivalent:

(1) E is ordinary.
(2) F = D and p splits in F .
(3) t = Tr(π`) is coprime to p.

Proof. By Proposition 4.1, if F = Q then E is supersingular. Hence, if E is ordinary, then
F is imaginary quadratic over Q, cf. Theorem III.9.3 in [1]. In the proof of Theorem V.3.1
in [1], it is shown that D embeds into End(Vp(E)) = Qp. Therefore, D is commutative and
must be equal to F . Also, since we can realize F as a subfield of Qp, the prime p must split
in F . This proves (1)⇒(2).

Next, suppose p splits as pp′. We have Nr(π) = q, so (π) = pmp′n with m + n = a. But
if both n and m are positive, then π = [p] ◦ φ for some endomorphism φ. Since π is purely
inseparable, [p] also must be purely inseparable. This implies that E is supersingular, so
πb ∈ Q for some b. Then m = n, and (π) = (pa/2). This is a contradiction to p being split in
F = Q(π). Hence after permuting p and p′, we can assume (π) = pa. Since t = π+ π̄, neither
p nor p′ divide t, so p cannot divide t. This proves (2)⇒(3). Also, clearly no power of π can
be in Q if (π) = pa. Therefore, (2)⇒(1).

Finally, assume t is coprime to p. Since F is generated by the roots of x2 − tx + q, which
decomposes into a product of coprime factors modulo p, the prime p splits in F . Hence
(3)⇒(2). �

Corollary 4.3. If a is even and π = ±pa/2, then E is supersingular, F = Q and D is a
quaternion algebra. Moreover, D = D̄. Otherwise, F = D is imaginary quadratic over Q
with the following possibilities.

(1) If p splits in F , (p) = pp′, then (π) = pa and E is ordinary with all endomorphisms
defined over k.

(2) If p ramifies, (p) = p2, then (π) = pa and E is supersingular with not all endomor-
phisms defined over k.

(3) If p remains inert, (p) = p, then a is even, (π) = pa/2 and E is supersingular with not
all endomorphisms defined over k.

The splitting behaviour of p in F in terms of t is given by the following elementary lemma
[6, p. 537]:

Lemma 4.4. In F = Q(
√
t2 − 4q):

(1) p ramifies if
(i) t = 0 and a is odd;

(ii) t = 0, a is even, and p = 2;
(iii) t = ±√q, a is even, and p = 3;

(iv) t = ±pa+1
2 , a is odd, and p = 2 or 3.
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(2) p stays prime if
(i) t = 0, a is even, and p ≡ 3 (mod 4);

(ii) t = ±√q, a is even, and p ≡ 2 (mod 3).
(3) p splits in all other cases.

Example 4.5. Not all integers in [−2
√
q, 2
√
q] are necessarily in the image of HT. As an

example, let q = 8. Then the range of HT is [−5, 5]. Suppose there is an elliptic curve with
t = 2. By Lemma 4.4, 2 splits in F . Hence E must be ordinary. On the other hand, t is not
coprime to p, which leads to a contradiction.

It is interesting to note that π satisfying x2 − 2x + 8 = 0 is an 8-Weil number. What
happens in fact is that (π) = p2p′, where (2) = pp′. By Theorem 2.2, D is a division algebra
with center F whose invariants are 2/3 and 1/3 at p and p′, respectively, and 0 everywhere
else. Thus, the dimension of D over F is 9, which implies that dim(A) = 3, i.e., π is a Weil
number of a 3-fold.

Example 4.6. Let q = p2 and p ≡ 1 (mod 3). Let t = ±p. The prime p splits in F = Q(
√
−3).

On the other hand, t is not coprime to p, so there is no elliptic curve with Frobenius trace
t. The corresponding q-Weil number is ζp, where ζ is a root of unity. By Theorem 2.2, D is
a division algebra with center F whose invariants are 1/2 and 1/2 at p and p′, respectively,
and 0 everywhere else. Thus, the dimension of D over F is 4, which implies that dim(A) = 2.
This abelian variety is supersingular, since πn ∈ Q for any n such that ζn = 1. This means
that A is simple over k, but is not absolutely simple: it becomes isogenous to a direct product
of two supersingular elliptic curves over the degree n extension of k.

Example 4.7. Let q = pa with a ≥ 3 odd. Let t = ±pb with 1 ≤ b < a/2. Then F is imaginary
quadratic where p splits. We must have (π) = pn(p′)m with n,m ≥ 1 and n + m = a. The
invariants of D, as a division algebra with center F , are n/a and m/a at p and p′, respectively,
and zero everywhere else. If n or m is coprime to a, then D has dimension a2 over F , so
dim(A) = a.

Theorem 4.8 (Honda-Tate theorem). The image of HT consists of the following values:

(1) t coprime to p;
(2) If a is even: t = ±2

√
q;

(3) If a is even and p 6≡ 1 (mod 3): t = ±√q;
(4) If a is odd and p = 2 or 3: t = ±pa+1

2 ;
(5) If either a is odd, or a is even and p 6≡ 1 (mod 4): t = 0.

The first of these are not supersingular; the second are and have all their endomorphisms
defined over k; the rest are but do not have all their endomorphisms defined over k.

Remark 4.9. Let d be the degree of the extension of k over which all endomorphisms of E are
defined. In case (3), d = 3. In case (5), d = 2. In case (4), if p = 2 then d = 4, if p = 3 then
d = 6. To see this, note that d is the minimal power for which πd ∈ Q. The corresponding
q-Weil numbers π are explicitly given at the bottom of page 537 of [6].
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Remark 4.10. Assume a is even. Then π = ±pa/2 are q-Weil numbers corresponding to
supersingular elliptic curves with all endomorphisms defined over k. (The corresponding
t = ±2pa/2.) The k-isogeny classes corresponding to π and −π are distinct. When we make a
quadratic extension these two fall together: any two supersingular curves are isogenous over
a quadratic extension of a field where all their endomorphisms are defined. But the extension
which identifies these two classes creates also a new isogeny class; there are two classes at
each stage, even though any two fixed curves eventually become isogenous.

5. Proof of Theorem 4.8

We give two different proofs. The first one uses results from the theory of abelian varieties.

Definition 5.1. Let π be a q-Weil number. We say that π is elliptic if [F : Q] ≤ 2 and there
is only one finite place of F where π has positive valuation. We say that π is effective is π is
a conjugate of the Frobenius πA of some simple abelian variety over k.

It is clear that if π is elliptic (resp. effective) q-Weil number, then πN is also elliptic (resp.
effective) qN -Weil number for any integer N ≥ 1. It is not true in general that if πN is elliptic
then π is elliptic (see Example 4.6).

Lemma 5.2. If πN is effective, then π is effective.

Proof. This is Lemme 1 on page 100 in Tate’s exposé [5], which is proven using methods from
the theory of abelian varieties (restriction of scalars construction). �

Lemma 5.3. If π is effective and elliptic, then A is an elliptic curve.

Proof. If F = Q, then ordp(π)/a = 1/2. In this case, by Part (2) of Theorem 2.2, dimQ(D) = 4
and by Part (3) of the same theorem, dim(A) = 1. Now assume [F : Q] = 2. Let p be the
place of F where ordp(π) 6= 0. If p splits or ramifies in F , then ordp(π)/a = 1. If p remains
inert, then fpordp(π)/a = 1. In either case, invp(D) = 0, as well as at all other finite places
of F , so D = F . Again by Part (3) of Theorem 2.2, dim(A) = 1. �

Lemma 5.4. Let π be a q-Weil number and π0 be a q0-Weil number. Assume both are elliptic,
q and q0 are powers of the same prime and Q(π) = Q(π0). Assume moreover that ordp(π) 6= 0

if and only if ordp(π0) 6= 0. Then there exist N and N0 such that πN = πN0
0 .

Proof. There is a unique finite place in F where π and π0 have non-zero valuations. This
place is over p. Hence we can choose n and n0 such that ordv(π

n) = ordv(π
n0
0 ) for all non-

archimedean places of F . This implies that πn/πn0
0 is a unit in F . Since F is either Q

or imaginary quadratic, the only units are roots of unity. Therefore, for some m we have
(πn/πn0

0 )m = 1. �

Proposition 5.5. The values listed in parts (2)-(5) of Theorem 4.8 are in the image of HT.

Proof. These values correspond to q-Weil numbers which are elliptic, and moreover, πN ∈ Q
for an appropriate Q. Thus, using Lemmas 5.2-5.4 and Proposition 4.1, it is enough to show
that in characteristic p there is at least one supersingular elliptic curve. This follows from
Theorem V.4.1 in [1]. �
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Proposition 5.6. The values in part (1) of Theorem 4.8 are in the image of HT.

Proof. Let π be the q-Weil number corresponding to t. Then p splits in F and π is elliptic
(since t is coprime to p). Let p be the place over p such that ordp(π) 6= 0.

Let O be the ring of integers of F . Consider E = C/O. This is an elliptic curve over C
such that End(E)⊗Q = F . Since E is CM, it can be defined over a finite extension H of F ,
and has potentially good reduction at any finite place of H. Thus, after possibly extending
H, we can assume that E has everywhere good reduction. Let P be a prime of H over p. Let
Ē be the reduction of E modulo P. Proposition II.4.4 in [2] implies that End(Ē) ⊗ Q = F .
The Frobenius π0 of Ē is a q0-Weil number, where q0 is the cardinality of the residue field at
P. Clearly q0 is a power of p. After possibly replacing π by its conjugate, we can also assume
that ordp(π0) 6= 0. Now the conditions of Lemma 5.4 are satisfied. Since πN0

0 is obviously
effective, πN is effective and thus π is effective. Since π is also elliptic, we are done. �

Before giving the alternative proof of Theorem 4.8, we point out an important subtlety. If E
and E ′ are isogenous curves over k, then their Weil numbers are Galois conjugate, so the fields
Q(π) ∼= Q(π′) are isomorphic. It is not true though that if Q(π) ∼= Q(π′) then E is isogenous
to E ′ over k. This is easy to see: take ±t in the image of HT. Since t2− 4q = (−t)2− 4q, the
field F is the same but the curves are not isogenous. As a more complicated example, take
q = 7, t = 4 and t′ = 5. Both of these values are in the image of HT since they are coprime to
p. On the other hand, 42−28 = −12 = −4 ·3 and 52−28 = −3, so F = Q(

√
−12) ∼= Q(

√
−3).

Lemma 5.7. If Q(π) ∼= Q(π′), then E and E ′ are isogenous over a finite degree extension of
k. The degree of this extension is ≤ 6.

Proof. After replacing π′ by its conjugate, we can assume that both q-Weil numbers π and π′

have non-zero valuations at the place p of F . Since by Corollary 4.3 the valuations of both π
and π′ at p are the same, ζ = π/π′ is a unit in F . Since F is imaginary quadratic, ζ is a root
of unity, and it is well-know that ζ is either 1, 2, 3, 4 or 6-th root of unity. If ζn = 1, then
πn = (π′)n. Thus, E and E ′ are isogenous over degree n extension of k. �

Lemma 5.8. Let k be a field and E an elliptic curve over k. Suppose Endk(E) contains an
order O in an imaginary quadratic field with ring of integers O′. Then E is isogenous over k
to an elliptic curve E ′ such that O′ ⊆ Endk(E

′).

Proof. Let c := {α ∈ O′ | αO′ ⊆ O}. It is easy to see that c is a non-zero ideal of O′ and
c ⊆ O. The group scheme E[c] = ∩α∈cE[α] is defined over k, so there is an isogeny ϕ : E → E ′

over k with kernel E[c]; cf. Proposition 4.12 and Exercise 3.13 (e) in [1]. Fix some c ∈ c and
let a ∈ O′ be arbitrary. Since ac and c are in O, there is an isogeny φ1 : E → E with kernel
E[ac] and an isogeny φ2 : E → E with kernel E[c]. Consider the compositions ϕφ1 : E → E ′

and ϕφ2 : E → E ′. Since

ker(ϕφ2) = E[cc] ⊆ E[acc] = ker(ϕφ1)

there is an isogeny ã : E ′ → E ′ such that ϕ ◦ ac = ã ◦ϕ ◦ c. The isogeny ã corresponds to the
action of a on E ′. This shows that O′ ⊆ Endk(E

′). �
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Remark 5.9. Let O and O′ be as in the previous lemma. It is not hard to show that there is
an integer n > 0 such that O = Z + nO′; see Exercise 3.20 in [1]. This implies that c, as an
ideal of O′, is generated by n. However, this does not mean that E[c] = E[n] because c, as
an ideal of O, is not principal. For example, if O′ is the ring of Gaussian integers Z+ iZ and
O = Z + 2iZ, then c is generated by 2 and 2i. It is easy to see that this ideal is not principal
in O.

Proposition 5.10. Let π and π′ be elliptic q-Weil numbers. If π is effective and Q(π) ∼=
Q(π′), then π′ is also effective.

Proof. By replacing π′ by its conjugate, we can assume that π and π′ have non-zero valuation
at the same place p of F . The relation of p and the ideals (π) and (π′) are given by Corollary
4.3. Hence ζ = π/π′ is a root of unity. Let E be an elliptic curve over k with Weil number
π, so that F ⊂ Endk(E) ⊗ Q. If ζ = ±1, then clearly ζ ∈ Autk(E). If ζ is a root of unity
of order > 2, then Endk(E) contains an order O in the imaginary quadratic field F , but it
is not necessarily true1 that ζ ∈ Endk(E). On the other hand, thanks to Lemma 5.8, after
possibly replacing E by a k-isogenous curve, we can assume that Endk(E) contains the ring
of integers of F so that again ζ ∈ Autk(E). Finally, by Lemma 6.2, a twist of E will have
q-Weil number π′. �

The previous proposition reduces the proof of Theorem 4.8 to showing that for any elliptic
π there exists an elliptic curve E over k such that Q(πE) ∼= Q(π). First, we prove another
supplementary lemma.

Lemma 5.11. Let E be an elliptic curve defined over a local field K of characteristic zero.
Assume the j-invariant of E is integral. Then there exists a totally ramified extension L/K
such that E has good reduction over L.

Proof. Since j(E) is integral, E has potential good reduction by Proposition VII.5.5 in [1].
Let K ′/K be a finite extension such that E has good reduction over K ′. We can assume that
K ′/K is Galois. Consider the natural surjective homomorphism Gal(K ′/K) → Gal(k′/k),
where k′ and k are the residue fields of K ′ and K, respectively. This homomorphism splits
since we have a lifting to Gal(K ′/K) of a generator of the cyclic group Gal(k′/k). Fix such a
splitting Gal(k′/k) → Gal(K ′/K), and let W be the image. The field L = (K ′)W is totally
ramified over K. We claim that E has good reduction over L. Indeed, since K ′/L is unramified
the reduction type of E over K ′ is the same as the reduction type of E over L; see [1, Prop.
VII.5.4]. �

Proposition 5.12. Let π be an elliptic q-Weil number. Let F = Q(π). There exists an
elliptic curve E over k such that Q(πE) ∼= F .

Proof. Suppose F = Q. Then a is even and π is equal to either pa/2 or −pa/2. It is known
that there is a supersingular elliptic curve E defined over Fp. If p ≥ 3, then we can assume
#E(Fp) = p + 1; see Example V.4.5 and Exercise V.5.10 in [1]. If p = 2, the curve given by

1This was pointed out to me by Jiangwei Xue.
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the equation E : y2 + y = x3 is supersingular and #E(F2) = 3. The Weil number of E over
Fp is πE = ±

√
−p. Over k, the Weil number of E is πaE = (−p)a/2, so Q(πaE) = F , as was

required to show.
Now suppose F is imaginary quadratic and p splits in F . Let p be the place where π has

positive valuation. By Corollary 4.3, pa = (π), so the order of p in the class group of F divides

a. Let OF be the ring of integers of F . Let Ẽ = C/OF . This curve has CM by F . It is

known that Ẽ can be defined over the Hilbert Class Field H of F , and that its j-invariant

is an algebraic integer. Moreover, by [3, p. 136] all endomorphism of Ẽ are defined over H,

so EndH(Ẽ) ⊗ Q = F . Let P be a prime of H over p. By class field theory, the degree of
residue field extension [OH/P : OF/p] is the order of p in the class group, so it divides a.

Since OF/p = Fp, we conclude that OH/P is a subfield of k. Consider Ẽ over the completion

HP. In principle, Ẽ need not have good reduction over HP, but by Lemma 5.11, we can pass

to a finite totally ramified extension L of HP where Ẽ has good reduction. This does not

affect the residue field. Therefore, without loss of generality, assume Ẽ has good reduction

modulo P. The reduction E of Ẽ modulo P is defined over k and contains F in its algebra
of endomorphism; see [3, pp. 120-121]. Since p splits in F , E is ordinary and F = Q(πE).

Now suppose F is imaginary quadratic but p does not split. Then Corollary 4.3 and
the previous construction produce a curve E over k which contains F as a subfield of its
endomorphism algebra D. Suppose D 6= F . Then the Frobenius π′ of E is in Q. It is a q-Weil
number, which, when considered as an element of F , has positive valuation only at p. Thus
ζ = π/π′ is a root of 1. Using the argument in the proof of Proposition 5.10, we can assume
ζ ∈ Autk(E). By Lemma 6.2, a twist of E has q-Weil number π. �

6. Twists of elliptic curves

Let K be an arbitrary perfect field. An elliptic curve E ′ defined over K is a twist of E if
E ′ is isomorphic to E over K̄ (but not necessarily over K). Since the j-invariant of an elliptic
curve characterizes the K̄-isomorphism class of E, the curve E ′ is a twist of E if and only if
j(E ′) = j(E). Let φ : E ′ → E be an isomorphism defined over K̄. Let σ ∈ Gal(K̄/K) =: G.
Then φσφ−1 is an automorphism of E. The map ξ : G → Aut(E) given by σ 7→ ξσ = φσφ−1

measures the failure of φ to be defined over K. This map is 1-cocycle, and in fact the twists
of E are in bijection with H1(G,Aut(E)); see Theorem X.2.2 in [1].

Example 6.1. If j(E) 6= 0, 1728 then Aut(E) = AutK(E) = Z/2Z, where the unique non-
trivial automorphism is the negation: P 7→ −P . In this case, H1(G,Aut(E)) = Hom(G,Z/2Z),
and the only twists are the quadratic twists. If the characteristic of K is not 2, then
Hom(G,Z/2Z) ∼= K×/(K×)2. Suppose E is given by the equation y2 = f(x), and let d ∈ K×
be square-free. We obtain a homomorphism χd : G → Z/2Z by σ 7→ σ(

√
d)/
√
d. Multipli-

cation by χd(σ) is an automorphism of E. The corresponding quadratic twist Ed of E is the
elliptic curve defined by the equation dy2 = f(x). This twist can also be characterized as the
elliptic curve E ′ whose set of K̄ points as a G-module is the set E(K̄) with a “twisted” Galois
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action where σ sends P to χd(σ)σ(P ), i.e.,

σ ◦ (x, y) = (σx, χd(σ)σy).

We are particularly interested in twists by automorphisms defined over K; these correspond
to the elements of H1(G,AutK(E)). Since the action of Galois on AutK(E) is trivial,

H1(G,AutK(E)) ∼= Hom(G,AutK(E)).

Let χ : G → AutK(E) be a homomorphism. The corresponding twist Eχ of E is uniquely
characterized by the property that the set Eχ(K̄) as a G-module is E(K̄) with a “twisted”
Galois action:

σ ◦ P = χ(σ) ◦ σ(P ),

where P ∈ E(K̄), σ(P ) indicates the action of G on E(K̄) and χ(σ) ◦ Q is the image of
Q ∈ E(K̄) under the action of automorphism χ(σ).

Now assume K = k is a finite field. Then G is topologically generated by the Frobenius, so
any continuous homomorphism G→ Autk(E) is uniquely determined by the image of Frobq.
It is known that an automorphism of E has order 1, 2, 3, 4, or 6. Let ζ ∈ Autk(E). Denote
the twist corresponding to χ(Frobq) = ζ by Eζ . The Frobenius Frobq acts on Eζ(k̄) (identified
with E(k̄)) by

Frobq ◦ (x, y) = ζ ◦ (xq, yq).

Denote the linear transformation induced by the Frobenius on V`(Eζ) by π`,ζ . From previous
discussion, if we identify V`(Eζ) = V`(E), then π`,ζ action on V`(Eζ) corresponds to the
action of π`ζ` on V`(E). Since π` and ζ` are semisimple commuting operators, they can be
simultaneously diagonalized (over Q`). Now ζ` has as its characteristic polynomial one of the
following

(x− 1)2, (x+ 1)2, x2 + 1, x2 + x+ 1, x2 − x+ 1

depending on its order being 1, 2, 4, 3, or 6. Fix a root i of x2 + 1, and ρ of x2 + x+ 1.

Lemma 6.2. Let π be a q-Weil number corresponding to E.

(1) −π is a q-Weil number for Eζ if ζ has order 2.
(2) iπ is a q-Weil number for Eζ or Eζ−1 if ζ has order 4.
(3) ρπ is a q-Weil number for Eζ or Eζ−1 if ζ has order 3.

Proof. The linear operator π` has eigenvalues {π, π̄}, and ζ` has eigenvalues {ζ, ζ−1}. It is
easy to see that the eigenvalues of π`ζ` are either {ζπ, ζ−1π̄} or {ζ−1π, ζπ̄}. �

Remark 6.3. Suppose p 6= 2. Let E be an elliptic curve over k given by the equation y2 = f(x).
Fix a non-square η ∈ k. The quadratic twist E ′ of E (up to k-isomorphism) is given by
ηy2 = f(x). We have

#E(k) + #E ′(k) = 2q + 2.

To see this one can argue as follows. The k-rational points at infinity of E and E ′ contribute
2 to the sum #E(k) + #E ′(k). Suppose x0 ∈ k is such that f(x0) = 0. Then the point (0, x0)
belongs to both E(k) and E ′(k), so contributes 2 to the sum of their orders. Now consider
x0 ∈ k such that f(x0) 6= 0. Then either f(x0) is a square in k and we get 2 k-rational
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points on E, or f(x0) is a non-square. In the second case, η−1f(x0) is a square, and we get
2 k-rational points on E ′. Thus, each x0 which is not a zero of f(x) contributes exactly 2 to
the sum #E(k) + #E ′(k).

Let t and t′ be the traces of the Frobenius of E and E ′. Since t = q + 1 − #E(k), the
previous lemma implies that t+ t′ = 0. But the roots of x2 − tx+ q are the negatives of the
roots of x2 + tx + q. Hence the q-Weil number of E is the negative of the q-Weil number of
E ′. This gives an alternative direct proof of Part (1) of Lemma 6.2.

Example 6.4. Assume k = F2. By Theorem 4.8, t = 0,±2 are in the image of HT, and
these values are exactly the values corresponding to supersingular elliptic curves. Consider
the following elliptic curves over F2:

E1 : y2 + y = x3

E2 : y2 + y = x3 + x2

E3 : y2 + y = x3 + x2 + 1.

It is easy to check that #E1(k) = 3, #E2(k) = 5, #E3(k) = 1. Hence the corresponding
trace t is 0,−2, 2, respectively. Also, as one easily checks, all three curves have j-invariant 0,
so they are twists of each other. In fact, up to k̄-isomorphism, there is a unique supersingular
elliptic curve in characteristic 2; see Exercise V.5.9 in [1].
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Séminaire Bourbaki, Exposé 352 (1968/69).
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