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D-elliptic sheaves and on Atkin–Lehner quotients of these curves
over local fields. Using a criterion of Poonen and Stoll, we show
that in infinitely many cases the Tate–Shafarevich groups of the
Jacobians of these Atkin–Lehner quotients have non-square orders.
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1. Introduction

Let F be a global field. Let C be a smooth projective geometrically irreducible curve of genus g
over F . Denote by |F | the set of places of F . For x ∈ |F |, denote by Fx the completion of F at x.
A place x ∈ |F | is called deficient for C if C Fx := C ×F Fx has no Fx-rational divisors of degree g − 1,
cf. [20]. It is known that the number of deficient places is finite. Let J be the Jacobian variety of C .
Assume the Tate–Shafarevich group X( J ) is finite. In [20], Poonen and Stoll show that the order of
X( J ) can be a square as well as twice a square. In the first case J is called even, and in the second
case J is called odd. The parity of the number of deficient places is directly related to the parity
of J [20, Section 8]:
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Theorem 1.1. J is even if and only if the number of deficient places for C is even.

Using this theorem, Poonen and Stoll show that infinitely many hyperelliptic Jacobians over Q are
odd for every even genus. For function fields, Proposition 30 in [20] gives the following example: Let
J be the Jacobian of the genus 2 curve

C : y2 = T x6 + x − aT

over Fq(T ), where q is odd, and a ∈ F×
q is a non-square. One checks that only the place ∞ = 1/T is

deficient for C . Since C defines a rational surface over Fq , the Brauer group of that surface is finite.
The main theorem in [7] then implies that X( J ) is also finite. Overall, X( J ) is finite and has non-
square order. As far as I know, this is the only example in published literature of an odd Jacobian over
a function field.

In this paper we adapt an idea of Jordan and Livné [10] to F = Fq(T ), and exhibit infinitely many
curves over F whose Jacobians are odd. These curves are obtained as quotients of modular curves
of D-elliptic sheaves. For this introduction we give an analytic description of these curves. Let D
be a division quaternion algebra over F . Let R be the subset of places of F where D ramifies (see
Section 2.2 for definitions). It is well known that R is a finite non-empty set of even cardinality,
and for any choice of a finite non-empty set R ⊂ |F | of even cardinality there is a unique, up to
isomorphism, division quaternion algebra ramified exactly at the places in R . Assume the place ∞ :=
1/T is not in R . Let D be a maximal Fq[T ]-order in D; all such orders are conjugate in D . Let Γ = D×
be the group of units of D . The group Γ is isomorphic to a discrete subgroup of GL2(F∞). Hence
Γ acts discontinuously on Drinfeld’s upper-half plane Ω = C∞ − F∞ , where C∞ is the completion
of an algebraic closure of F∞ . The quotient Γ \ Ω is the rigid-analytic space corresponding to a
smooth projective curve XD

F∞ over F∞ (see Section 2.4). The curve XD
F∞ has a canonical model XD

F

defined over F (see Section 3.1). The automorphism group of XD
F contains a subgroup isomorphic

to (Z/2Z)#R , which is generated by involutions {wx}x∈R naturally indexed by the places in R (see
Section 3.2). Assume for simplicity that q is odd. The main results of the paper are the following two
theorems:

Theorem 1.2. There are no deficient places for XD
F unless R = {x, y} and both places have odd degrees. In this

last case the deficient places for XD
F are x and y.

Theorem 1.3. Assume R = {x, y} and both places have even degrees. In addition, assume 4 does not divide
deg(y) and the monic generator of the prime ideal of Fq[T ] corresponding to y is not a square modulo the
prime ideal corresponding to x. Then x is the only deficient place for the quotient curve XD

F /w y.

In fact, we prove stronger versions of these theorems (see Theorems 4.2 and 4.5). We also prove
the following results which complement Theorem 1.3:

• There are infinitely many pairs {x, y} satisfying the conditions of Theorem 1.3. Thus, there are
infinitely many odd Jacobians over F .

• Only finitely many of the curves XD
F /w y are hyperelliptic.

• It is possible to choose {x, y} so that both places have degree 2 and satisfy the congruence con-
dition of Theorem 1.3. For such a choice the Tate–Shafarevich group of the Jacobian variety of
XD

F /w y is finite, and therefore provably has non-square order. The dimension of this Jacobian is
(q2 − 1)/2.

Our proofs rely on the results in [19], where we have examined the existence of rational points on
XD

F over local fields.
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2. Notation and terminology

2.1. Notation

F = Fq(T ) is the field of rational functions on the projective line P := P1
Fq

over the finite field Fq .

Denote by Ox the ring of integers of Fx . The residue field of Ox will be denoted by Fx . The degree
of x is deg(x) := [Fx : Fq], so qx := #Fx = qdeg(x) . Let �x be a uniformizer of Ox . We assume that the
valuation ordx : Fx → Z is normalized by ordx(�x) = 1. Let A := Fq[T ] be the polynomial ring over Fq;
this is the subring of F consisting of functions which are regular away from ∞ = 1/T . For a place
x �= ∞, let px be the corresponding prime ideal of A, and ℘x ∈ A be the monic generator of px . For a
ring H with a unit element, we denote by H× the group of its invertible elements. For S ⊂ |F |, put

Odd(S) =
{

1, if all places in S have odd degrees;

0, otherwise.

2.2. Quaternion algebras

A quaternion algebra over a field F is a 4-dimensional associative F -algebra with center F which
does not possess non-trivial two-sided ideals. It is known that a quaternion algebra is either a division
algebra or is isomorphic to the algebra of 2 × 2 matrices M2(F ). If D is a quaternion algebra over a
field F , and L is a field extension of F , then D ⊗F L is a quaternion algebra over L. Denote Dx :=
D ⊗F Fx . We say that the algebra D ramifies (resp. splits) at x ∈ |F | if Dx is a division algebra (resp.
Dx ∼= M2(Fx)). As we mentioned in the introduction, the number of places where D ramifies is even,
and the set R of these places determines D up to isomorphism. (The empty set R = ∅ corresponds to
M2(F ).)

There is a field extension L/F such that D ⊗F L ∼= M2(L). Considering α ∈ D as an element of
M2(L) we can compute its determinant. The value Nr(α) of this determinant is in F , and is indepen-
dent of the choice of L; it is called the reduced norm of α.

An OP-order in D is a sheaf of OP-algebras with generic fibre D which is coherent and locally
free as an OP-module. A D-bimodule for an OP-order D in D is an OP-module I with left and right
D-actions compatible with the OP-action and such that

(λi)μ = λ(iμ), for any λ,μ ∈ D and i ∈ I.

A D-bimodule I is invertible if there is another D-bimodule J such that there are isomorphisms of
D-bimodules

I ⊗D J ∼= D, J ⊗D I ∼= D.

The group of isomorphism classes of invertible D-bimodules will be denoted by Pic(D): the group
operation is I1 ⊗D I2, cf. [21, (37.5)].

2.3. Graphs

We recall some of the terminology related to graphs, as presented in [27] and [12]. A graph G
consists of a set of vertices Ver(G) and a set of edges Ed(G). Every edge y has origin o(y) ∈ Ver(G),
terminus t(y) ∈ Ver(G), and inverse edge ȳ ∈ Ed(G) such that ¯̄y = y and o(y) = t( ȳ), t(y) = o( ȳ). The
vertices o(y) and t(y) are the extremities of y. Note that it is allowed for distinct edges y �= z to have
o(y) = o(z) and t(y) = t(z). We say that two vertices are adjacent if they are the extremities of some
edge. The graph G is a graph with lengths if we are given a map

� = �G : Ed(G) →N= {1,2,3, . . .}
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such that �(y) = �( ȳ). An automorphism of G is a pair φ = (φ1, φ2) of bijections φ1 : Ver(G) → Ver(G)

and φ2 : Ed(G) → Ed(G) such that φ1(o(y)) = o(φ2(y)), φ2(y) = φ2( ȳ), and �(y) = �(φ2(y)).
Let Γ be a group acting on a graph G (i.e., Γ acts via automorphisms). For v ∈ Ver(G), denote by

StabΓ (v) = {γ ∈ Γ | γ v = v}
the stabilizer of v in Γ . Similarly, let StabΓ (y) = StabΓ ( ȳ) be the stabilizer of y ∈ Ed(G). There is a
quotient graph Γ \ G such that Ver(Γ \ G) = Γ \ Ver(G) and Ed(Γ \ G) = Γ \ Ed(G).

2.4. Mumford uniformization

Let O be a complete discrete valuation ring with fraction field K , finite residue field k and a
uniformizer π . Let Γ be a subgroup of GL2(K ) whose image Γ in PGL2(K ) is discrete with compact
quotient. There is a formal scheme Ω̂ over Spf(O) which is equipped with a natural action of PGL2(K )

and parametrizes certain formal groups. Raynaud’s “generic fibre” of Ω̂ is Drinfeld’s non-archimedean
half-plane Ω = P

1,an
K − P

1,an
K (K ) over K . For the description of the rigid-analytic structure of Ω and

the construction of Ω̂ we refer to Chapter I in [2].
Kurihara in [12] extended Mumford’s fundamental result [15] and proved the following: there is

a normal, proper and flat scheme XΓ over Spec(O) such that the formal completion of XΓ along
its closed fibre is isomorphic to the quotient Γ \ Ω̂ . The generic fibre XΓ

K is a smooth, geometrically
integral curve over K . The closed fibre XΓ

k is reduced with normal crossing singularities, and every
irreducible component is isomorphic to P1

k . If x is a double point on XΓ
k , then there exists a unique

integer mx for which the completion of OX,x ⊗O Ôur is isomorphic to the completion of

Ôur[t, s]/(ts − πmx
)
.

Here Ôur denotes the completion of the maximal unramified extension of O.
The dual graph G of XΓ is the following graph with lengths. The vertices of G are the irreducible

components of XΓ
k . The edges of G , ignoring the orientation, are the singular points of XΓ

k . If x is
a double point and {y, ȳ} is the corresponding edge of G , then the extremities of y and ȳ are the
irreducible components passing through x; choosing between y or ȳ corresponds to choosing one of
the branches through x. Finally, �(y) = �( ȳ) = mx .

Let T be the graph whose vertices Ver(T ) = {[Λ]} are the homothety classes of O-lattices in K 2,
and two vertices [Λ] and [Λ′] are adjacent if we can choose representatives L ∈ [Λ] and L′ ∈ [Λ′]
such that L′ ⊂ L and L/L′ ∼= k. One shows that T is an infinite tree in which every vertex is adjacent
to exactly #k + 1 other vertices. This is the Bruhat–Tits tree of PGL2(K ), cf. [27, p. 70]. The group
GL2(K ) acts on T as the group of linear automorphisms of K 2, so the group Γ also acts on T . We
assign lengths to the edges of the quotient graph Γ \ T : for y ∈ Ed(Γ \ T ) let �(y) = # StabΓ ( ỹ),
where ỹ is a preimage of y in T . By Proposition 3.2 in [12], there is an isomorphism G ∼= Γ \ T of
graphs with lengths.

Notation 2.1. For x ∈ |F |, we denote Mumford’s formal scheme over Spf(Ox) by Ω̂x , and the Bruhat–
Tits tree of PGL2(Fx) by Tx .

3. Modular curves of D-elliptic sheaves

3.1. D-elliptic sheaves

The notion of D-elliptic sheaves was introduced in [13]. Here we follow [28], which gives a
somewhat different (but equivalent) definition of D-elliptic sheaves that is more convenient for our
purposes.

From now on we assume that D is a division quaternion algebra which is split at ∞. Let D be an
OP-order in D such that Dx :=D⊗OP

Ox is a maximal order in Dx for any x �= ∞, and D∞ is isomor-
phic to the subring of M2(O∞) consisting of matrices which are upper triangular modulo �∞ . Let
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D(− 1
2 ∞) denote the two-sided ideal in D given by D(− 1

2 ∞)x =Dx for all x �= ∞, and D(− 1
2 ∞)∞ is

the radical of Dx . Concretely, D(− 1
2 ∞)∞ is the ideal of D∞ consisting of matrices which are upper

triangular modulo �∞ with zeros on the diagonal.
For a scheme S over Fq denote by FrobS its Frobenius endomorphism, which is the identity on the

points and the qth power map on the functions. Denote by P× S the fiber product P×Spec(Fq) S . For
a sheaf F on P and G on S , the sheaf pr∗1(F) ⊗ pr∗2(G) on P× S is denoted by F � G .

Definition 3.1. Let z : S → P be a scheme over P, which we also consider as a scheme over Fq via the
composition S → P → Spec(Fq). A D-elliptic sheaf with pole ∞ over S is a pair E = (E, t) consisting of
a locally free right D�OS -module E of rank 1 and an injective homomorphism of D�OS -modules

t : (idP × FrobS)
∗
(
E ⊗D D

(
−1

2
∞

))
→ E

such that the cokernel of t is supported on the graph Γz ⊂ P× S of z and is a locally free OS -module
of rank 2.

Definition 3.2. Let X be a stack over a scheme S . An S-scheme X is a coarse moduli scheme for X if
there is an S-morphism π : X → X such that:

(1) Every S-morphism from X to an S-scheme Y factors uniquely through π .
(2) If Spec(k) → S is a geometric point (k is an algebraically closed field), then π induces a bijection

between the set of isomorphism classes of objects in X over k and X(k).

This is essentially Definition I.8.1 in [4]. In general, a stack need not have a coarse moduli scheme,
but the universal property guarantees that if X exists then it is unique.

Theorem 3.3. The moduli stack X D of D-elliptic sheaves of fixed degree deg(E) = −1 is a Deligne–Mumford
stack of finite type over P. It admits a coarse moduli scheme which will be denoted by XD . The canonical
morphism XD → P is projective of pure relative dimension 1. This morphism has geometrically connected
fibres and is smooth over P− R − ∞.

Proof. This is a special case of Theorem 4.11 in [28], or Theorems 4.1 and 5.1 in [13], except for
the statement that XD → P has geometrically connected fibres. To prove this last claim, by the Stein
factorization theorem, it is enough to show that XD

C∞ := XD ×P Spec(C∞) is connected. Using the
uniformization theorem [1, Theorem 4.4.11] and the strong approximation theorem for D× , one can
deduce that the number of connected components of XD

C∞ is equal to the class number of A, which
is 1. �
Notation 3.4. For a P-scheme S = Spec(Q ) we denote XD

Q := XD ×P S .

3.2. Atkin–Lehner involutions

Let Px be the radical of Dx . By [21, (39.1)], Px is a two-sided ideal in Dx , and every two-sided
ideal of Dx is an integral power of Px . It is known that there exists Πx ∈ Px such that ΠxDx =
DxΠx = Px . The positive integer ex such that P

ex
x = �xDx is the index of Dx . With this definition,

ex = 2 if x ∈ R ∪ ∞, and ex = 1, otherwise. Define the group of divisors

Div(D) :=
{ ∑

x∈|F |
nxx ∈

⊕
x∈|F |

Qx
∣∣∣ exnx ∈ Z for any x ∈ |F |

}
.

For a divisor Z = ∑
x∈|F | nxx ∈ Div(D), let D(Z) be the invertible D-bimodule given by

D(Z)|P−Supp(Z) = D|P−Supp(Z) and D(Z)x = P
−nxex
x for all x ∈ Supp(Z). For each f ∈ F × there is an
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associated divisor div( f ) = ∑
x∈|F | ordx( f )x, which we consider as an element of Div(D). It follows

from [21, (40.9)] that the sequence

0 → F ×/F×
q

div−→ Div(D)
Z 
→D(Z)−−−−−→ Pic(D) → 0 (3.1)

is exact, cf. [28, Section 3.2]. Let Div0(D) ⊂ Div(D) be the subgroup of degree 0 divisors:
∑

x∈|F | nxx ∈
Div0(D) if

∑
x∈|F | nx deg(x) = 0. Define Pic0(D) to be the image of Div0(D) in Pic(D). It is easy to

check that Pic0(D) ∼= (Z/2Z)#R , and is generated by the divisors (
deg(x)

2 ∞ − 1
2 x), x ∈ R .

If L ∈ Pic(D), then

E = (E, t) 
→ E ⊗L := (E ⊗D L, t ⊗D idL)

defines an automorphism of the stack of D-elliptic sheaves. Moreover, if L ∈ Pic0(D), then this action
preserves the substack consisting of (E, t) with deg(E) fixed, cf. [28, Section 4.1]. Hence W := Pic0(D)

acts on X D by automorphisms. By the universal property of the coarse moduli scheme, W also acts
on XD by automorphisms.

Definition 3.5. We call the subgroup W of Aut(XD) the group of Atkin–Lehner involutions, and denote
by wx ∈ W , x ∈ R , the automorphism induced by

D
(

deg(x)

2
∞ − 1

2
x

)
.

Remark 3.6. It follows from [17, Theorem 4.6] that if Odd(R) = 0, then Aut(XD) = W .

Definition 3.7. For y ∈ R , denote the quotient curve XD/w y by X (y) . Since w y is an automorphism of
XD as a P-scheme, the quotient morphism π : XD → X (y) is a morphism of P-schemes. It is possible
to define a quotient stack X D/w y =: X (y) , using the general machinery developed in [22]. Then
X (y) can also be defined as the coarse moduli scheme of X (y) .

The normalizer of Dx in Dx is the subgroup of D×
x

N(Dx) = {
g ∈ D×

x

∣∣ gDx g−1 = Dx
}
.

If g ∈ N(Dx), then gDx is a two-sided ideal of Dx , so there exists m ∈ Z such that gDx = Pm
x Define

vDx (g) = m
ex

. Note that for g ∈ Fx ⊂ N(Dx), we have ordx(g) = vDx (g).

Let C (D) := ∏′
x∈|F | N(Dx)/F × ∏

x∈|F | D×
x , where

∏′
x∈|F | N(Dx) denotes the restricted direct prod-

uct of the groups {N(Dx)}x∈|F | with respect to {D×
x }x∈|F | . Given a = {ax}x ∈ ∏′

x∈|F | N(Dx), we put
div(a) = ∑

x∈|F | vDx (ax)x. The assignment a 
→D(div(a)) induces an isomorphism [28, Corollary 3.4]:

C (D) ∼= Pic(D). (3.2)

Let D∞ := H0(P− ∞,D); this is a maximal A-order in D . Let Γ ∞ := (D∞)× be the units in D∞ .
Define the normalizer of D∞ in D as

N
(
D∞) := {

g ∈ D× ∣∣ gD∞g−1 = D∞}
.

Denote C (D∞) = N(D∞)/F ×Γ ∞ . Then (3.2) induces an isomorphism
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C
(
D∞) ∼= Pic0(D). (3.3)

By (37.25) and (37.28) in [21], the natural homomorphism

N
(
D∞)

/F ×Γ ∞ →
∏

x∈|F |−∞
N(Dx)/F ×

x D×
x (3.4)

is an isomorphism. Next, by (37.26) and (37.27) in [21],

N(Dx)/F ×
x D×

x
∼=

{
1, if x /∈ R ∪ ∞;

Z/2Z, if x ∈ R .

For x ∈ R , the non-trivial element of N(Dx)/F ×
x D×

x is the image of Πx . According to [21, (34.8)], there
exist elements {λx ∈ D∞}x∈R such that Nr(λx)A = px . The image of λx in Dx can be taken as Πx .
Overall, C (D∞) ∼= (Z/2Z)#R is generated by λx ’s, and the isomorphism (3.3) is given by wx 
→ λx .

3.3. Uniformization theorems

Later in the paper we will need to know how the Atkin–Lehner involutions in Definition 3.5 act
on XD in terms of rigid-analytic uniformizations of these curves. Here we describe these analytic
actions.

Since D∞ ∼= M2(F∞), the group Γ ∞ can be considered as a discrete subgroup of GL2(F∞) via an
embedding

Γ ∞ ↪→ D×(F∞) ∼= GL2(F∞).

Let X̂D
O∞ denote the completion of XD

O∞ along its special fibre. By a theorem of Blum and Stuhler [1,
Theorem 4.4.11], there is an isomorphism of formal O∞-schemes

Γ ∞ \ Ω̂∞ ∼= X̂D
O∞ , (3.5)

which is compatible with the action of W ; see [28, Section 4.6]. More precisely, the action of wx on
Γ ∞ \ Ω̂∞ induced by (3.5) is given by the action of λx considered as an element of GL2(F∞). Note
that λx is in the normalizer of Γ ∞ , so it acts on the quotient Γ ∞ \ Ω̂∞ and this action does not
depend on a particular choice of λx .

Now fix some x ∈ R . Let D̄ be the quaternion algebra over F which is ramified exactly at
(R − x) ∪ ∞. Fix a maximal A-order D in D̄(F ), and denote

Ax = A
[
℘−1

x

];
Dx = D⊗A Ax;

Dx,2 = {
γ ∈Dx

∣∣ ordx
(
Nr(γ )

) ∈ 2Z
};

Γ x = (
Dx,2)×

.

If we fix an identification of D̄x with M2(Fx), then Γ x is a subgroup of GL2(Fx) whose image in
PGL2(Fx) is discrete and cocompact. Let O(2)

x be the unramified quadratic extension of Ox . Let γx ∈Dx

be an element such that Nr(γx)A = px . Such γx exists by [21, (34.8)] and it normalizes Γ x , hence acts
on Γ x \ Ω̂x . Let X̂D

Ox
denote the completion of XD

Ox
along its special fibre. By the analogue of the

Cherednik–Drinfeld uniformization, proven in this context by Hausberger [8], there is an isomorphism
of formal Ox-schemes
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[(
Γ x \ Ω̂x

) ⊗O(2)
x

]
/
(
γx ⊗ Frob−1

x

) ∼= X̂D
Ox

, (3.6)

where Frobx : O(2)
x → O(2)

x denotes the lift of the Frobenius homomorphism a 
→ aqx on Fx to an
Ox-homomorphism.

Let N(Dx,2) be the normalizer of Dx,2 in D̄ , and

C
(
Dx,2) := N

(
Dx,2)/F ×Γ x.

As in (3.4), the natural homomorphism

N
(
Dx,2)/F ×Γ x →

∏
y∈|F |−∞

N
(
Dx,2

y

)
/F ×

y

(
Dx,2

y

)×

is an isomorphism. The normalizer N(D
x,2
x ) is F ×

x (Dx
x)

× , so we have

N
(
Dx,2

x

)
/F ×

x

(
Dx,2

x

)× ∼= Z/2Z,

generated by γx . On the other hand, if y �= x, then

N
(
Dx,2

y

)
/F ×

y

(
Dx,2

y

)× ∼= N(Dy)/F ×
y D×

y .

We see that

C
(
Dx,2) ∼= (Z/2Z)#R ,

generated by a set of elements {γy ∈ Dx}y∈R such that Nr(γy)A = py . The group W is canonically
isomorphic with C (Dx,2) via w y 
→ γy . The isomorphism (3.6) is compatible with the action of W :
for y ∈ R , the action of w y on the left-hand side of (3.6) is given by γy ; see [28, Section 4.6].

4. Main results

Proposition 4.1. Denote by Divd
Fx

(XD) the set of Weil divisors on XD
Fx

which are rational over Fx and have
degree d.

(1) If x /∈ R, then Divd
Fx

(XD) �= ∅ for any d.

(2) If x ∈ R, then Divd
Fx

(XD) �= ∅ for even d, and Divd
F v

(XD) = ∅ for odd d.

Proof. For n � 1, denote by F
(n)
x the degree n extension of Fx , and by F (n)

x the degree n unramified
extension of Fx .

First, suppose x /∈ R ∪ ∞. By Theorem 3.3, XD
Fx

is a smooth projective curve. Weil’s bound on
the number of rational points on a curve over a finite field guarantees the existence of an integer
N � 1 such that XD

Fx
(F

(n)
x ) �= ∅ for any n � N . The geometric version of Hensel’s lemma [9, Lemma 1.1]

implies that XD
Fx

(F (n)
x ) �= ∅. Let P ∈ XD

Fx
(F (N+1)

x ) and Q ∈ XD
Fx

(F (N)
x ). The divisor d · Z , where

Z =
∑

σ∈Gal(F (N+1)
x /Fx)

Pσ −
∑

τ∈Gal(F (N)
x /Fx)

Q τ ,

is Fx-rational and has degree d.
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Next, suppose x = ∞. By (3.5), XD
F∞ is Mumford uniformizable. This implies that XD

F∞ has a regular

model over O∞ whose special fibre consists of F∞-rational P1’s crossing at F∞-rational points. In
particular, over any extension F

(n)∞ , n � 2, there are smooth F
(n)∞ -rational points. Again by Hensel’s

lemma [9, Lemma 1.1], there are F (n)∞ -rational points on XD
F∞ for any n � 2. The trace to F∞ of such

a point is in Divn
F∞(XD). One obtains a rational divisor of degree 1 by taking the difference of degree

3 and 2 rational divisors. This proves (1).
Finally, suppose x ∈ R . By [19, Theorem 4.1], XD

Fx
(F (2)

x ) �= ∅. Taking the trace of an F (2)
x -rational

point and multiplying the resulting divisor by n, we see that Div2n
Fx

(XD) �= ∅ for any n. Now suppose

d is odd but Divd
Fx

(XD) �= ∅. Let Z ∈ Divd
Fx

(XD). Write Z = Z1 − Z2, where Z1 and Z2 are effective di-
visors. Since deg(Z) = deg(Z1) − deg(Z2) is odd, exactly one of these divisors has odd degree. Denote
by F alg

x the algebraic closure of Fx , F sep
x the separable closure of Fx , and let G := Gal(F sep

x /Fx). Since
Z is Fx-rational, both Z1 and Z2 are G-invariant. Assume without loss of generality that deg(Z1) is
odd. Write Z1 = Zo + Ze , where Zo = ∑

P∈XD
Fx

(F alg
x )

nP P , nP ∈ Z are odd, and Ze = ∑
Q ∈XD

Fx
(F alg

x )
nQ Q ,

nQ ∈ Z are even. Again Zo and Ze are G-invariant. Since deg(Ze) is even, Zo is non-zero. Since deg(Zo)

is necessarily odd, the support of Zo must consist of an odd number of points. This set of points is
G-invariant. We have a finite set of odd cardinality with an action of G , so one of the orbits necessar-
ily has odd length. Thus, there is a point P in the support of Z such that the set of Galois conjugates
of P has odd cardinality. This implies that the separable degree [Fx(P ) : Fx]s is odd. If P is not sep-
arable, then the degree of inseparability of Fx(P ) over Fx divides the weight nP of P in Z (as Z is
Fx-rational). Since nP is odd by assumption, the inseparable degree [Fx(P ) : Fx]i is also odd. Overall,
the degree of the extension Fx(P )/Fx is odd. We conclude that there is a finite extension K/Fx of odd
degree such that XD

Fx
(K ) �= ∅. This contradicts [19, Theorem 4.1], so Divd

Fx
(XD) must be empty. �

Theorem 4.2. Consider the following two conditions:

(1) q is even;
(2) q is odd, #R = 2, and Odd(R) = 1.

If one of these conditions holds, then the deficient places for XD
F are the places in R. Otherwise, there are no

deficient places for XD
F . In either case, by Theorem 1.1, the Jacobian variety of XD

F is even.

Proof. Using Proposition 4.1, it is enough to show that the genus of XD
F is even if and only if one of

the above conditions holds. The genus g(XD
F ) of XD

F is given by the formula (see [16])

g
(

XD
F

) = 1 + 1

q2 − 1

∏
x∈R

(qx − 1) − q

q + 1
· 2#R−1 · Odd(R). (4.1)

Note that modulo q the genus is congruent to 1+(−1)#R+1. Since #R is even, q divides g(XD
F ). Hence

the genus is even if q is even. From now on we assume that q is odd.
First, assume Odd(R) = 0. Let x ∈ R be a place of even degree, and y �= x be another place. Since

(qx − 1)(qy − 1)/(q2 − 1) is an even integer, g(XD
F ) is odd. Now assume Odd(R) = 1. Denote r = #R .

Let {n1,n2, . . . ,nr} be the degrees of places in R . These are odd integers by assumption. For odd
integers n and q we can write

qn − 1 = (q − 1)qn−1 + (q + 1)M,

where M is even. Thus,

1

q2 − 1

r∏(
qni − 1

) = S

q + 1

r∏
(q − 1)qni−1 + M ′,
i=1 i=2
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where S = qn1−1 + qn1−2 + · · · + q + 1 and M ′ is an even integer. This implies that

g
(

XD
F

) − 1 = q
Sqm−1(q − 1)r−1 − 2r−1

q + 1
+ M ′,

where m > 1 is an even integer. Let a � 1 and c � 1 be odd integers, and b � 0 be even. Let

B = qa(qb + qb−1 + · · · + 1
)
.

We are reduced to proving that

� = B(q − 1)c − 2c

q + 1

is odd if and only if c = 1. If b � 2, then by writing qb + qb−1 + · · · + 1 = qb + (q + 1)(qb−2 + · · · + 1)

we see that the parity of � coincides with the parity of

qa+b(q − 1)c − 2c

q + 1
.

Thus, we can assume b = 0. Expand

qa(q − 1)c − 2c =
c∑

i=0

(−1)i
(

c

i

)(
qa+c−i + (−1)i+1).

Note that (qa+c−i + (−1)i+1)/(q + 1) is an integer which is even if and only if i is even. Therefore, the
parity of � coincides with the parity of

(
c

1

)
+

(
c

3

)
+ · · · +

(
c

c

)
= 2c−1,

which is obviously odd if and only if c = 1. �
Proposition 4.3. Denote by Divd

Fx
(X (y)) the set of Weil divisors on X (y)

Fx
which are rational over Fx and have

degree d.

(1) If x /∈ R or x = y, then Divd
Fx

(X (y)) �= ∅ for any d.

(2) If x ∈ R − y and d is even, then Divd
Fx

(X (y)) �= ∅.

(3) If x ∈ R − y and Divd
Fx

(X (y)) �= ∅ for an odd d, then there is an extension K/Fx of odd degree such that

X (y)
Fx

(K ) �= ∅.

Proof. Let π : XD
Fx

→ X (y)
Fx

be the quotient morphism. If Z ∈ Divd
Fx

(X R), then the pushforward π∗(Z) is

in Divd
Fx

(X (y)), so Proposition 4.1 implies (2) and (1) for x /∈ R . Part (3) follows from the argument in

the proof of Proposition 4.1. It remains to prove that Divd
F y

(X (y)) �= ∅ for any d. By (3.6) and ensuing

discussion, X R
F y

is the w y ⊗Frob−1
y quadratic twist of the Mumford curve Γ y \Ω̂y . Hence the quotient

X (y)
F y

of XD
F y

by w y is Mumford uniformizable (without a twist) and one can argue as in the proof of
Proposition 4.1 in the case when x = ∞. �
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Proposition 4.4. Assume q is odd, and x, y ∈ R are two distinct places of even degrees. If d is odd, then
Div(d)

Fx
(X (y)) = ∅.

Proof. Suppose d is odd and Div(d)
Fx

(X (y)) �= ∅. Then by Proposition 4.3 there is an extension K/Fx of

odd degree such that X (y)
Fx

(K ) �= ∅. The graph G := Γ x \ Tx is the dual graph of the Mumford curve
uniformized by Γ x . From (3.6) we get an action of W on G . The same argument as in [10, p. 683]
shows that if X (y)

Fx
(K ) �= ∅, then there is an edge s in G such that the following two conditions hold:

(1) either �(s) is even or w y(s) = s;
(2) either wx(s) = s̄ or wx w y(s) = s̄.

By [19, Lemma 4.4], an edge of G has length 1 or q + 1, and the number of edges of length q + 1 is
equal to

2#R−1 Odd(R − x)
(
1 − Odd(x)

)
.

From the assumption that y has even degree we get that all edges of G have length 1. Thus, for the
existence of K -rational points on X (y)

Fx
we must have w y(s) = s, and either wx(s) = s̄ or wx w y(s) = s̄.

Obviously w y(s) = s and wx w y(s) = s̄ imply wx(s) = s̄. Therefore, the considerations reduce to a
single case

wx(s) = s̄ and w y(s) = s.

Let s̃ be an edge of Tx lying above s. Modifying γx by an element of Γ x , we may assume that
γxs̃ = ¯̃s. Let v be one of the extremities of s̃. Then γ 2

x fixes v and Nr(γ 2
x ) generates p2

x . Thus,
γ 2

x ∈ F ×
x μGL2(Ox)μ

−1 for some μ ∈ GL2(Fx). By the norm condition, we get γ 2
x = ℘xc, where

c ∈ μGL2(Ox)μ
−1. Hence ordx(Nr(γ 2

x /℘x)) = 0. On the other hand, since γ 2
x /℘x also belongs to Dx ,

c belongs to a maximal A-order D′ in D̄ (in fact, D′ = μGL2(Ox)μ
−1 ∩ Dx). Since Nr(c) has zero

valuation at every v ∈ |F | − ∞, c ∈ (D′)× . By our assumption, deg(y) is even and D̄ is ramified at y
and ∞, so (D′)× ∼= F×

q ; cf. [5, Lemma 1]. Hence γ 2
x = c℘x , where c ∈ F×

q . Since deg(x) is even, c must
be a non-square, as otherwise ∞ splits in F (

√
c℘x), which contradicts the fact that this is a subfield

of the quaternion algebra D̄ ramified at ∞. Fix a non-square ξ ∈ F×
q . Overall, we conclude that the

condition wx(s) = s̄ translates into

γ 2
x = ξ℘x,

for an appropriate choice of γx .
Modifying γy by an element of Γ x , we can further assume that γy(s̃) = s̃. Next, note that γy

belongs to some maximal A-order D′′ in D̄ . Since D̄ is ramified at y and Nr(γy)A = py , the element
γy generates the radical of Dx

y . Hence γ 2
y = c · ℘y , where c ∈ D′′ . Comparing the norms of both sides,

we see that c must be a unit in D′′ . The same argument as with D′ shows that (D′′)× ∼= F×
q , so after

possibly scaling γy by a constant in F×
q , we get

γ 2
y = ξ℘y .

Let 〈Γ x, γy〉 be the subgroup of GL2(Fx) generated by Γ x and γy . By construction, the element γy

fixes s̃. Since the edges of G have length 1, the stabilizer of s̃ in Γ x is (Ax)× . Therefore,

Stab〈Γ x,γy〉(s̃)/
(

Ax)× ⊂ Fq(γy)
×.
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On the other hand, γ −1
x γyγx(s̃) = s̃. We conclude that there is n ∈ Z and a,b ∈ Fq (a,b are not both

zero) such that

γyγx = ℘n
x γx(a + bγy).

Now the same argument as in the proof of part (3) of Theorem 4.1 in [19] shows that for such an
equality to be true we must have n = 0, a = 0 and b = −1, i.e.,

γyγx = −γxγy .

The quadratic extensions F (γx) and F (γy) of F are obviously linearly disjoint. Therefore, D̄ is
isomorphic to the quaternion algebra H(ξ℘x, ξ℘y) over F having the presentation:

i2 = ξ℘x, j2 = ξ℘y, i j = − ji.

As is well known, the algebra H(ξ℘x, ξ℘y) ramifies (resp. splits) at v ∈ |F | if and only if the local
symbol (ξ℘x, ξ℘y)v = −1 (resp. = 1); cf. [30, p. 32]. On the other hand, by [26, p. 210]

(ξ℘x, ξ℘y)x =
(

ξ℘y

px

)
and (ξ℘x, ξ℘y)y =

(
ξ℘x

py

)
,

where ( ·
· ) is the Legendre symbol. Since x and y have even degree, ξ is a square modulo px and py .

Thus, (
ξ℘y
px

) = (
℘y
px

) and (
ξ℘x
py

) = (
℘x
py

). The algebra D̄ splits at x and ramifies at y, so we must have

(
℘y

px

)
= 1 and

(
℘x

py

)
= −1.

But the quadratic reciprocity [23, Theorem 3.5] says that

(
℘y

px

)(
℘x

py

)
= (−1)

q−1
2 deg(x) deg(y) = 1.

This leads to a contradiction, so Divd
Fx

(X (y)) = ∅. �
Theorem 4.5. Assume q is odd and all places in R have even degrees. Consider the following three conditions:

(1) R = {x, y}, i.e., #R = 2;
(2) (

℘y
px

) = −1;
(3) deg(y) is not divisible by 4.

If one of these conditions fails, then there are no deficient places for X(y)
F . If all three conditions hold, then x

is the only deficient place for X (y)
F . In the first case the Jacobian of X (y)

F is even and in the second case it is odd.

Proof. Let Fix(w y) be the number of fixed points of w y acting on XD
F . By the Hurwitz genus formula

applied to the quotient map π : XD
F → X (y)

F , the genus of X (y)
F is equal to

g
(

X (y)
) = g(XD) + 1 − Fix(w y)
2 4
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(note that π has only tame ramification). The genus g(XD) is given by the formula (4.1). On the other
hand, by [17, Proposition 4.12]

Fix(w y) = h(ξ℘y)
∏
x∈R

(
1 −

(
ξ℘y

px

))
,

where ξ ∈ F×
q is a fixed non-square, and h(ξ℘y) denotes the ideal class number of the Dedekind ring

Fq[T ,
√

ξ℘y]. (A remark is in order: In [17], w y is defined analytically as the involution of Γ ∞ \ Ω∞
induced by λy , hence here we are implicitly using the fact that (3.5) is compatible with the action
of W .) Combining these formulas, we get

g
(

X (y)
) = 1 + 1

2(q2 − 1)

∏
x∈R

(qx − 1) − h(ξ℘y)

4

∏
x∈R

(
1 −

(
ξ℘y

px

))
. (4.2)

It is easy to see that the middle summand is always an even integer. Hence g(X (y)) is even if and
only if the last summand is odd. According to [3, Theorem 1], the class number h(ξ℘y) is always even
and it is divisible by 4 if and only if deg(y) is divisible by 4. Using this fact, one easily checks that
the last summand is odd if and only if the three conditions are satisfied. The theorem now follows
from Propositions 4.3 and 4.4. �
Proposition 4.6. There are infinitely many pairs R = {x, y} for which the conditions in Theorem 4.5 are satis-
fied. Hence there are infinitely many X (y)

F with odd Jacobians.

Proof. Fix an arbitrary y such that deg(y) ≡ 2 (mod 4). By the function field analogue of Dirichlet’s
theorem [23, Theorem 4.7], there are infinitely many places x ∈ |F | of even degree such that (

℘x
py

) =
−1. The quadratic reciprocity implies that for such places (

℘y
px

) = −1. �
Proposition 4.7. For a fixed q there are only finitely many R such that X (y)

F is hyperelliptic.

Proof. Fix some x /∈ R ∪ ∞. Corollary 4.8 in [16] gives a lower bound on the number of F(2)
x -rational

points on XD
Fx

. Since the quotient map XD
Fx

→ X (y)

Fx
is defined over Fx and has degree 2, from this

bound we get

#X (y)

Fx

(
F

(2)
x

)
� 1

2
#XD

Fx

(
F

(2)
x

)
� 1

2(q2 − 1)

∏
z∈R∪x

(qz − 1).

By [14, Proposition 5.14], if X (y)
F is hyperelliptic, then X (y)

Fx
is also hyperelliptic. Hence there is a

degree-2 morphism X (y)

Fx
→ P1

Fx
defined over Fx . This implies

#X (y)

Fx

(
F

(2)
x

)
� 2#P1

Fx

(
F

(2)
x

) = 2
(
q2

x + 1
)
.

Comparing with the earlier lower bound on #X (y)

Fx
(F

(2)
x ), we get

∏
(qz − 1) � 4

(
q2

x + 1
)(

q2 − 1
)
. (4.3)
z∈R∪x
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Let r = ∑
z∈R deg(z). By [19, Lemma 7.7], we can choose x /∈ R ∪ ∞ such that deg(x) � logq(r + 1) + 1.

Since
∏

z∈R(qz − 1) � qr/2, the inequality (4.3) implies qr/2 < 32q3r, which obviously is possible only

for finitely many R . Therefore, only finitely many X (y)
F are hyperelliptic. �

Proposition 4.8. Assume q is odd, R = {x, y}, and deg(x) = deg(y) = 2. Denote by J (y) the Jacobian variety
of X (y)

F . The Tate–Shafarevich group X( J (y)) is finite.

Proof. The definitions of the concepts discussed in this paragraph can be found in [6]. Let n � A be
an ideal. Let X0(n) be the compactified Drinfeld modular curve classifying pairs (φ, Cn), where φ is
a rank-2 Drinfeld A-modules and Cn

∼= A/n is a cyclic subgroup of φ. Let J0(n) denote the Jacobian
of X0(n)F . Let Γ0(n) be the level-n Hecke congruence subgroup of GL2(A). Let S0(n) be the C-vector
space of automorphic cusp forms of Drinfeld type on Γ0(n). Let T(n) be the commutative Z-algebra
generated by the Hecke operators acting on S0(n). The Hecke algebra T(n) is a finitely generated free
Z-module which also naturally acts on J0(n). Let f ∈ S0(n) be a newform which is an eigenform
for all t ∈ T(n). Denote by λ f (t) the eigenvalue of t acting on f . The map T(n) → C, t 
→ λ f (t), is
an algebra homomorphism; denote its kernel by I f . The image I f ( J0(n)) is an abelian subvariety of
J0(n) defined over F . Let A f := J0(n)/I f ( J0(n)). Similar to the case of classical modular Jacobians
over Q, the Jacobian J0(n) is isogenous over F to a direct product of abelian varieties A f , where each
f is a newform of some level m|n (a given A f can appear more than once in the decomposition of
J0(n)). This implies that X( J0(n)) is finite if and only if X(A f ) is finite for all such A f . On the
other hand, by the main theorem of [11], X(A f ) is finite if and only if

ords=1 L(A f , s) = rankZA f (F ),

where L(A f , s) denotes the L-function of A f ; see [11] or [25] for the definition.
Let JD denote the Jacobian of XD

F . Let r := ∏
x∈R px . The Jacquet–Langlands correspondence over

F in combination with some other deep results implies that there is a surjective homomorphism
J0(r) → JD defined over F ; see [18, Theorem 7.1]. Since by construction X (y) is a quotient of XD ,
there is also a surjective homomorphism JD → J (y) defined over F . Thus, there is a surjective homo-
morphism J0(r) → J (y) defined over F . This implies that if X( J0(r)) is finite, then X( J (y)) is also
finite.

Now assume q is odd, R = {x, y}, and deg(x) = deg(y) = 2. In this case J0(r) is isogenous to JD

as both have dimension q2. There are no old forms of level r, since S0(1), S0(px) and S0(py) are
zero-dimensional. Let f ∈ S0(r) be a Hecke eigenform. The L-function L( f , s) of f is a polynomial in
q−s of degree deg(x)+ deg(y)− 3 = 1, cf. [29, p. 227]. Hence ords=0 L( f , s) � 1. Using the analogue of
the Gross–Zagier formula over F [24, p. 440], one concludes that ords=1 L(A f , s) � rankZA f (F ). The
converse inequality is known to hold for any abelian variety over F ; see the main theorem of [25].
Hence X(A f ) is finite, which, as we explained, implies that X( J (y)) is also finite. �
Corollary 4.9. Assume q is odd. Fix x ∈ |F | with deg(x) = 2. There are (q2 − 1)/4 places y ∈ |F | such that
deg(y) = 2 and (

℘y
px

) = −1. For R = {x, y}, the Tate–Shafarevich group X( J (y)) is finite and has non-square

order. The dimension of J (y) is (q2 − 1)/2.

Proof. If R = {x, y} is such that deg(x) = deg(y) = 2 and (
℘y
px

) = −1, then X( J (y)) is finite by Propo-

sition 4.8, and has non-square order by Theorem 4.5. In this case dim J (y) = (q2 − 1)/2 by (4.2).
It remains to count the number of places y. Consider the geometric quadratic extension K :=

F (
√

℘x) of F , and let C be the corresponding smooth projective curve over Fq . Since deg(x) = 2, the
genus of this curve is zero, so C ∼= P1

Fq
. Let z ∈ |F | be a place of degree 1. Either z remains inert in K ,

in which case it produces a degree-2 place of K , or z splits in K and produces two places of degree 1.
Let N be the number of degree-1 places of F which split in K . Since C is a projective line, the number
of degree-1 places of K is q + 1. Hence 2N = q + 1. This implies that the number of degree-1 places
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of F which remain inert in K is (q+1)− N = (q+1)/2. Next, K has q(q−1)/2 places of degree 2 (this
is just the number of monic irreducible quadratic polynomials in A). As we saw, (q + 1)/2 of these
places come from degree-1 places of F . One place comes from x, which ramifies, so the remaining
(q2 −2q−3)/2 degree-2 places of K must come from degree-2 places of F which split in K . Therefore,
the number of degree-2 places of F which remain inert in K is

q(q − 1)

2
− q2 − 2q − 3

4
− 1 = q2 − 1

4
. �

References

[1] A. Blum, U. Stuhler, Drinfeld modules and elliptic sheaves, in: Vector Bundles on Curves: New Directions, in: Lecture Notes
in Math., vol. 1649, 1997, pp. 110–188.

[2] J.-F. Boutot, H. Carayol, Uniformisation p-adique des courbes de Shimura: les théorèmes de Cerednik et de Drinfeld,
Astérisque 196 (1991) 45–158.

[3] G. Cornelissen, The 2-primary class group of certain hyperelliptic curves, J. Number Theory 91 (2001) 174–185.
[4] P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques, in: Modular Functions of One Variable II, in:

Lecture Notes in Math., vol. 349, Springer, 1973, pp. 143–316.
[5] M. Denert, J. Van Geel, The class number of hereditary orders in non-Eichler algebras over global function fields, Math.

Ann. 282 (1988) 379–393.
[6] E.-U. Gekeler, M. Reversat, Jacobians of Drinfeld modular curves, J. Reine Angew. Math. 476 (1996) 27–93.
[7] C. Gonzalez-Aviles, Brauer groups and Tate–Shafarevich groups, J. Math. Sci. Univ. Tokyo 10 (2003) 391–419.
[8] T. Hausberger, Uniformisation des variétés de Laumon-Rapoport-Stuhler et conjecture de Drinfeld-Carayol, Ann. Inst.

Fourier 55 (2005) 1285–1371.
[9] B. Jordan, R. Livné, Local diophantine properties of Shimura curves, Math. Ann. 270 (1985) 235–248.

[10] B. Jordan, R. Livné, On Atkin–Lehner quotients of Shimura curves, Bull. Lond. Math. Soc. 31 (1999) 681–685.
[11] K. Kato, F. Trihan, On the conjecture of Birch and Swinnerton–Dyer in characteristic p > 0, Invent. Math. 153 (2003) 537–

592.
[12] A. Kurihara, On some examples of equations defining Shimura curves and the Mumford uniformization, J. Fac. Sci. Univ.

Tokyo 25 (1979) 277–300.
[13] G. Laumon, M. Rapoport, U. Stuhler, D-elliptic sheaves and the Langlands correspondence, Invent. Math. 113 (1993) 217–

338.
[14] K. Lønsted, S. Kleiman, Basics on families of hyperelliptic curves, Compos. Math. 38 (1979) 83–111.
[15] D. Mumford, An analytic construction of degenerating curves over local rings, Compos. Math. 24 (1972) 129–174.
[16] M. Papikian, Genus formula for modular curves of D-elliptic sheaves, Arch. Math. 92 (2009) 237–250.
[17] M. Papikian, On hyperelliptic modular curves over function fields, Arch. Math. 92 (2009) 291–302.
[18] M. Papikian, On Jacquet–Langlands isogeny over function fields, J. Number Theory 131 (2011) 1149–1175.
[19] M. Papikian, Local diophantine properties of modular curves of D-elliptic sheaves, J. Reine Angew. Math. 664 (2012) 115–

139.
[20] B. Poonen, M. Stoll, The Cassels–Tate pairing of polarized abelian varieties, Ann. of Math. 150 (1999) 1109–1149.
[21] I. Reiner, Maximal Orders, Academic Press, 1975.
[22] M. Romagny, Group actions on stacks and applications, Michigan Math. J. 53 (2005) 209–236.
[23] M. Rosen, Number Theory in Function Fields, Grad. Texts in Math., vol. 210, Springer, 2002.
[24] H.-G. Rück, U. Tipp, Heegner points and L-series of automorphic cusp forms of Drinfeld type, Doc. Math. 5 (2000) 365–444.
[25] P. Schneider, Zur Vermutung von Birch und Swinnerton–Dyer über globalen Funktionenkörpern, Math. Ann. 260 (1982)

495–510.
[26] J.-P. Serre, Local Fields, Grad. Texts in Math., vol. 67, Springer, 1979.
[27] J.-P. Serre, Trees, Springer Monogr. Math., 2003.
[28] M. Spiess, Twists of Drinfeld–Stuhler modular varieties, Doc. Math. (2010) 595–654 (Extra volume: Andrei A. Suslin sixtieth

birthday).
[29] A. Tamagawa, The Eisenstein quotient of the Jacobian variety of a Drinfeld modular curve, Publ. RIMS Kyoto Univ. 31 (1995)

204–246.
[30] M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Math., vol. 800, Springer-Verlag, 1980.


	D-elliptic sheaves and odd Jacobians
	1 Introduction
	2 Notation and terminology
	2.1 Notation
	2.2 Quaternion algebras
	2.3 Graphs
	2.4 Mumford uniformization

	3 Modular curves of D-elliptic sheaves
	3.1 D-elliptic sheaves
	3.2 Atkin-Lehner involutions
	3.3 Uniformization theorems

	4 Main results
	References


