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Let Fq[T ] be the polynomial ring over a finite field Fq. We 
study the endomorphism rings of Drinfeld Fq [T ]-modules of 
arbitrary rank over finite fields. We compare the endomor-
phism rings to their subrings generated by the Frobenius 
endomorphism and deduce from this a refinement of a reci-
procity law for division fields of Drinfeld modules proved in 
our earlier paper. We then use these results to give an efficient 
algorithm for computing the endomorphism rings and discuss 
some interesting examples produced by our algorithm.
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1. Introduction

1.1. Drinfeld modules

We first recall some basic concepts from the theory of Drinfeld modules.
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Let Fq be a finite field with q elements. Let A = Fq[T ] be the ring of polynomials 
in T with coefficients in Fq. Let F = Fq(T ) be the field of fractions of A. We will call 
a nonzero prime ideal of A simply a prime of A. Given a prime p of A, we denote by 
Ap (resp. Fp) the completion of A at p (resp. the field of fractions of Ap). By abuse of 
notation we will denote the monic generator of p by the same symbol.

Let L be a field equipped with a structure γ : A → L of an A-algebra. Let τ be the 
Frobenius endomorphism of L relative to Fq, that is, the map α �→ αq. Let L{τ} be the 
noncommutative ring of polynomials in τ with coefficients in L and commutation rule 
τc = cqτ , c ∈ L. A Drinfeld module of rank r ≥ 1 defined over L is a ring homomorphism 
φ : A → L{τ}, a �→ φa, uniquely determined by the image of T

φT = γ(T ) +
r∑

i=1
gi(T )τ i, gr(T ) �= 0.

The endomorphism ring of φ is the centralizer of φ(A) in L{τ}:

EndL(φ) = {u ∈ L{τ} | uφa = φau for all a ∈ A}
= {u ∈ L{τ} | uφT = φTu}.

It is clear that EndL(φ) contains in its center the subring φ(A) ∼= A, hence is an 
A-algebra. It can be shown that EndL(φ) is a free A-module of rank ≤ r2; see [6].

The Drinfeld module φ endows the algebraic closure L of L with an A-module struc-
ture, where a ∈ A acts by φa. The a-torsion φ[a] ⊂ L of φ is the kernel of φa, that is, 
the set of zeros of the polynomial

φa(x) = γ(a)x +
r·deg(a)∑

i=1
gi(a)xqi ∈ L[x].

It is easy to see that φ[a] has a natural structure of an A-module, where A acts via φ. 
Moreover, if a is not divisible by ker(γ), then φ[a] ∼= (A/aA)⊕r and φ[a] is contained in 
the separable closure Lsep ⊂ L (since φ′

a(x) = γ(a) �= 0).
For a prime l �A different from ker(γ), the l-adic Tate module of φ is the inverse limit

Tl(φ) = lim
←−

φ[ln] ∼= A⊕r
l

.

1.2. Main results

Let p � A be a prime and k a finite extension of Fp := A/p. We consider k as an 
A-algebra via the composition γ : A → A/p ↪→ k. Let φ be a Drinfeld module of rank 
r defined over k. Denote E = Endk(φ) and D = E ⊗A F . Let π := τ [k:Fq ] ∈ k{τ}. It is 
clear that π is in the center of k{τ}. In particular, π commutes with φ(A), so π ∈ E . 
Let K = F (π) be the subfield of D generated by π. The following is well-known (cf. [7], 
[12]):
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• The degree of the field extension K/F divides r.
• D is a central division algebra over K of dimension (r/[K : F ])2.
• There is a unique place of K over the place ∞ = 1/T of F .

The endomorphism rings (and algebras) of Drinfeld modules over finite fields have 
been extensively studied; cf. [7], [1], [12], [13], [26]. They play an important role in the 
theory of Drinfeld modules, as well as their applications to other areas, such as the theory 
of central simple algebras (cf. [11]), the Langlands conjecture over function fields (cf. [7], 
[17]), or the study of the splitting behavior of primes in certain non-abelian extensions 
of F (cf. [4], [10], [5]). In this paper, we are interested in comparing E to A[π]. We then 
deduce from this a method for computing E .

Throughout the paper, we make the following assumption:

[K : F ] = r. (1.1)

This assumption is satisfied if, for example, k = Fp (cf. [10, Prop. 2.1]) or φ[p] ∼=
(A/p)r−1, i.e., φ is ordinary (cf. [17, (2.5)]). It is equivalent to the assumption that 
the endomorphism algebra D is commutative, or more precisely, that E is an A-order 
in K. In that case, A[π] ⊂ E are A-orders in K, so by the theory of finitely generated 
modules over principal ideal domains we have

E/A[π] ∼= A/b1A×A/b2A× · · · ×A/br−1A

for uniquely determined nonzero monic polynomials b1, . . . , br−1 ∈ A such that

b1 | b2 | · · · | br−1.

We call the (r− 1)-tuple (b1, . . . , br−1) the Frobenius index of φ. The first main result of 
this paper is the following:

Theorem 1.1. For each 1 ≤ i ≤ r− 1, there is a monic polynomial fi(x) ∈ A[x] of degree 
i such that fi(π) ∈ biE. Moreover, if there is a monic polynomial g(x) ∈ A[x] of degree i
and b ∈ A such that g(π) ∈ bE then b divides bi.

The proof of this theorem is given in Section 3. It is based on the existence of special 
bases of A-orders; this crucial fact about orders is discussed separately in Section 2. 
As we explain in Remark 3.2, Theorem 1.1 can be considered as a refinement of the 
reciprocity law proved in our earlier paper [10, Thm. 1.2] (see also [4, Cor. 2] for the 
rank-2 case).

The condition fi(π) ∈ biE means that we have an equality fi(π) = uφbi in k{τ} for 
some u ∈ E . For given bi and fi, the validity of equality fi(π) = uφbi can be easily 
checked using the division algorithm in k{τ}. On the other hand, a finite list of possible 
Frobenius indices of φ can be deduced either by computing the discriminant of A[π], or 
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by computing an A-basis of the integral closure of A in K. Since we can assume that the 
coefficients of fi(x) ∈ A[x] have degrees less than the degree of bi, the Frobenius index of 
π can be determined by performing finitely many calculations. This leads to an efficient 
algorithm for computing the Frobenius index of φ and an A-basis of E . The algorithm 
is described in detail in Section 3. We have implemented this algorithm in the Magma
software package. In Section 3, the reader will find an explicit example of a calculation 
of the endomorphism ring of a Drinfeld module of rank 3. In the rank-2 case, we gave 
another algorithm for computing E in [10]; the present algorithm is different from the 
one in [10], even when specialized to r = 2.

A completely different algorithm from ours for computing the endomorphism rings 
of Drinfeld modules was proposed by Kuhn and Pink in [15]. This algorithm works in 
all cases, without the restriction (1.1), and determines a basis of E as an Fq[π]-module. 
However, it is not quite clear how easily one can deduce from this the A-module structure 
of E , e.g., determine the Frobenius index or the discriminant of E over A. We discuss the 
algorithm of Kuhn and Pink in more detail in Remark 3.5.

Next, we explain a theoretical application of Theorem 1.1. Let Φ : A → F{τ} be a 
Drinfeld module of rank r over F defined by

ΦT = T + g1τ + · · · + grτ
r.

(We will always implicitly assume that γ : A → F is the canonical embedding of A into 
its field of fractions.) We say that a prime p � A is a prime of good reduction for Φ if 
ordp(gi) ≥ 0 for 1 ≤ i ≤ r − 1, and ordp(gr) = 0. (All but finitely many primes of A
are primes of good reduction for a given Drinfeld module Φ.) Let n ∈ A be a monic 
polynomial and F (Φ[n]) be the splitting field of the polynomial Φn(x); such fields are 
called division fields (or torsion fields) of Φ. If p is a prime of good reduction of Φ and 
p � n, then p does not ramify in F (Φ[n]). One is interested in the splitting behavior of p in 
F (Φ[n]) as n varies, e.g., a “reciprocity law” in the form of congruence conditions modulo 
n which guarantee that p splits completely F (Φ[n]). The primes which split completely 
in F (Φ[n]) have been studied before, e.g. [5], [10], [16].

We can consider g1, . . . , gr as elements of Ap; denote by g the image of g ∈ Ap under 
the canonical homomorphism Ap → Ap/p = Fp. The reduction of Φ at p is the Drinfeld 
module φ over Fp given by

φT = T + g1τ + · · · + grτ
r.

Note that φ has rank r since gr �= 0. Let E = EndFp
(φ) and π = τdeg(p). We have the 

inclusion of orders A[π] ⊂ E . Theorem 1.1, or rather its proof, provides an explicit basis 
of E as a free A-module of rank r. With respect to this basis, the action of π on E by 
multiplication can be described by an explicit matrix F(p) ∈ Matr(A) which depends 
on the Frobenius index of φ, the coefficients of the polynomials fi, and the coefficients 
of the minimal polynomial of π. We explain in Section 4 that under a mild (but subtle) 
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technical assumption on E , the integral matrix F(p), when reduced modulo n, represents 
the conjugacy class of the Frobenius at p in Gal(F (Φ[n])/F ) ⊂ GLr(A/nA). This result 
in the rank-2 case was proved in [4, Thm. 1]. The analogue of this result for elliptic 
curves goes back to Duke and Tóth [8], which was our initial motivation for considering 
this problem in the setting of Drinfeld modules. (For a refinement of the result of Duke 
and Tóth for elliptic curves see the paper by Centeleghe [3].)

The technical assumption mentioned in the previous paragraph is the assumption that 
E⊗AAl is a Gorenstein ring for all primes l | n. It is often satisfied (see Proposition 4.10), 
but not always when r ≥ 3. At the end of Section 4 we give an interesting example of 
E⊗AAl which is not Gorenstein. The study of the Gorenstein property of endomorphism 
rings of abelian varieties, especially the Jacobian varieties of modular curves, has played 
an important role in many fundamental developments in arithmetic geometry (cf. [20]), 
but, as far as we are aware, it has not been studied at all in the context of Drinfeld 
modules.

2. Some facts about orders

Let A be a principal ideal domain with field of fraction F . Let f(x) ∈ A[x] be a monic 
irreducible polynomial of degree r with coefficients in A. Fix a root π of f(x) in F and 
denote K = F (π) ⊂ F . Let B be the integral closure of A in K.

The field K is an r-dimensional vector space over F . For a given α ∈ K, multiplication 
by α on K defines an F -linear transformation Mα : K → K. Let TrK/F (α) ∈ F (resp. 
norm NrK/F (α) ∈ F ) be the trace (resp. determinant) of Mα. The discriminant of an 
r-tuple α1, . . . , αr ∈ K is

disc(α1, . . . , αr) = det
(
TrK/F (αiαj)

)
.

The discriminant does not depend of the ordering of the elements αj. It is known that 
disc(α1, . . . , αr) = 0 if and only if either K/F is inseparable or α1, . . . , αr are linearly 
dependent over F . Moreover, (cf. [21, Ch. III]):

(i) disc(1, π, . . . , πn−1) = (−1)n(n−1)/2NrK/F (f ′(π)).

(ii) If 

⎡
⎣β1

...
βr

⎤
⎦ = M

⎡
⎣α1

...
αr

⎤
⎦ with M ∈ Matr(F ), then

disc(β1, . . . , βr) = det(M)2 · disc(α1, . . . , αr).

An A-order in K is an A-subalgebra O of B with the same unity element and such 
that B/O has finite cardinality. Note that any A-order O is a free A-modules of rank r. 
An example of an A-order in K is

A[π] = A + Aπ + · · · + Aπr−1.
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Let O ⊂ O′ be two A-orders in K. Since both modules O and O′ have the same rank 
over A, and both contain 1, we have

O′/O ∼= A/b1A×A/b2A× · · · ×A/br−1A,

for uniquely determined (up to multiplication by units in A) non-zero elements 
b1, . . . , br−1 ∈ A such that

b1 | b2 | · · · | br−1.

This is an easy consequence of the theory of finitely generated modules over principal 
ideal domains; cf. [9, Thm. 12.5]. We call the ideal χ(O′/O) of A generated by 

∏r−1
i=1 bi

the index of O in O′, and (b1, . . . , br−1) the refined index of O in O′ (in a more standard 
terminology, the elements b1, . . . , br−1 ∈ A are the invariant factors of O′/O).

Let O be an A-order in K. Let α1, . . . , αr be a basis of O over A:

O = Aα1 + · · · + Aαr.

Define the discriminant disc(O) of O to be the ideal of A generated by disc(α1, . . . , αr). 
By (ii) above, disc(O) does not depend on the choice of a basis α1, . . . , αr. Moreover, by 
the same property (see also [21, Ch. III]), if O ⊆ O′ is an inclusion of orders, then

disc(O) = χ(O′/O)2 · disc(O′), (2.1)

and for an inclusion of orders O ⊆ O′ ⊆ O′′ we have

χ(O′′/O) = χ(O′′/O′) · χ(O′/O). (2.2)

The following theorem is essentially Theorem 13 in [18]. Since this fact is crucial for 
our later purposes and we need the statement in a more general setting than in [18], we 
give the proof for the sake of completeness.

Theorem 2.1. Assume O is an A-order in K such that A[π] ⊂ O. Let (b1, . . . , br−1) be 
the refined index of A[π] in O. There are polynomials fi(x) ∈ A[x], 1 ≤ i ≤ r − 1, such 
that fi is monic, deg(fi) = i, and

1, f1(π)
b1

, · · · , fr−1(π)
br−1

,

is an A-basis of O.

Proof. Fix a generator d of the ideal χ(O/A[π]). For each k, 1 ≤ k ≤ r, let Gk be the 
free A-submodule of K generated by 1/d, π/d, . . . , πk−1/d. Let Ok = O ∩Gk. Note that 
O1 = A, rankAOk = k (since A + Aπ + · · · + Aπk ⊂ Ok) and Or = O (since for any 
α ∈ O we have dα ∈ A[π]).
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We will define d1 | d2 | · · · | dn−1 | d and monic polynomials fi(x) ∈ A[x] of degree i, 
1 ≤ i ≤ r − 1, such that for each 1 ≤ k ≤ r

1, f1(π)/d1, . . . , fk−1(π)/dk−1

is an A-basis of Ok. This is certainly true for k = 1. Now fix some 1 ≤ k < r and assume 
we were able to prove this claim for Ok. Let

η : Gk+1 −→ A,

k∑
i=0

ai
πi

d
�−→ ak,

be the projection onto the last factor. Let I = η(Ok+1) be the image of Ok+1 under this 
homomorphism. Clearly I is an ideal of A, thus can be generated by a single element. 
Fix some β ∈ Ok+1 such that η(β) generates I. Note that I �= 0 (since πk ∈ Ok+1 maps 
to d �= 0), and Ok ⊆ ker(η|Ok+1). Since I is a free A-module of rank 1, comparing the 
ranks we conclude that Ok = ker(η|Ok+1) and Ok+1 = Ok⊕Aβ. It remains to show that 
β = fk(π)/dk. We have

η

(
πfk−1(π)
dk−1

)
= η

(
1

dk−1
πk + · · ·

)
= η

(
d

dk−1

πk

d
+ · · ·

)
= d

dk−1
∈ I.

It follows that aη(β) = d/dk−1 for some a ∈ A. Defining dk = adk−1, we have η(β) =
d/dk, which implies that β = fk(π)/dk for some fk(x) = xk+lower degree terms. Note 
that by construction dk−1 | dk | d, so it remains to show that the coefficients of fk(x)
are in A. However, since fk(π)/dk−1 = aβ ∈ Ok+1, we have

fk(π) − πfk−1(π)
dk−1

=: γ ∈ Ok+1.

On the other hand, η(γ) = aη(β) − d/dk−1 = 0, so in fact, γ ∈ Ok. Using our basis for 
Ok we can write γ = g(π)/dk−1 for some g(x) ∈ A[x] having degree < k. This implies 
that fk(π) − πfk−1(π) = g(π). Since the degree of the minimal polynomial of π over 
F is r and the degree of fk(x) − πfk−1(x) − g(x) is strictly less than r, we must have 
fk(x) = xfk−1(x) + g(x) ∈ A[x].

It remains to show that (d1, . . . , dr−1) is the refined index of A[π] in O. Since the 
polynomials fi(x) are monic, the elements 1, f1(π), . . . , fn−1(π) form an A-basis of A[π]
(the transition matrix from 1, π, . . . , πn−1 to this basis is upper triangular with 1’s on the 
diagonal, so has determinant 1). But now, using 1, f1(π)/d1, . . . , fn−1(π)/dn−1 as a basis 
of O, we obviously have O/A[π] ∼= A/d1A × · · · × A/dr−1A with d1 | · · · | dr−1. Since 
the invariant factors of O/A[π] are unique, up to multiplication by units, d1, d2, . . . , dr−1

must be the invariant factors. �
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Remark 2.2. The polynomials fi ∈ A[x], 1 ≤ i ≤ r−1, in Theorem 2.1 are not unique. It 
is easy to see that they can be replaced by any other monic polynomials gi ∈ A[x] such 
that gi has degree i and all gi(π)/bi are in O.

Proposition 2.3. Let O be an A-order in K such that A[π] ⊂ O. Let (b1, . . . , br−1) be the 
refined index of A[π] in O.

1. If i + j < r, then bibj | bi+j.
2. For any i < r, we have bi1 | bi.
3. b

r(r−1)
1 | disc(A[π]).

4. If b1 �= 1, then the inclusion of ideals (b1) � (b2) � · · · � (br−1) is strict.

Proof. Let f1(π)/b1, . . . , fr−1(π)/br−1 be the A-basis of O supplied by Theorem 2.1. 
Consider α = fi(π)fj(π)/bibj ∈ O. We can express α as an A-linear combination α =
a0 +

∑i+j
k=1 akfk(π)/bk. (The basis elements fk(π)/bk for k > i + j do not appear in this 

linear combination since otherwise π would a root of a non-zero polynomial of degree 
< r.) Comparing the coefficients of πi+j on both sides we get 1/bibj = ai+j/bi+j for 
some nonzero ai+j ∈ A. Thus, bibj divides bi+j . This proves (1).

(2) and (4) immediately follow from (1). Next, by (2.1), χ(O/A[π])2 = (b1 · · · br−1)2

divides disc(A[π]). On the other hand, bi1 divides bi, so b2(1+2+3+···+(r−1))
1 = b

r(r−1)
1

divides disc(A[π]). This proves (3). �
3. Endomorphism rings of Drinfeld modules

Let the notation and assumptions be as at the beginning of Section 1.2. In particular, φ
is a Drinfeld module of rank r over a finite extension k of Fp, E = Endk(φ), and A[π] ⊂ E
is the suborder generated by the Frobenius endomorphism of φ. As in Section 1.2, assume 
(1.1).

Theorem 3.1. Let (b1, . . . , br−1) be the Frobenius index of φ. For each 1 ≤ i ≤ r − 1, 
there is a monic polynomial fi(x) ∈ A[x] of degree i such that fi(π) ∈ biE. Moreover, if 
there is a monic polynomial g(x) ∈ A[x] of degree i and b ∈ A such that g(π) ∈ bE, then 
b divides bi.

Proof. Theorem 2.1, applied to A[π] ⊂ E , implies the existence of monic polynomials fi
of degree i, 1 ≤ i ≤ r − 1, such that fi(π) ∈ biE .

Now assume there is a monic polynomial g(x) ∈ A[x] of degree i and b ∈ A such 
that g(π) ∈ bE . Suppose there is a prime q ∈ A such that q | b but q � bi. Then we can 
find z1, z2 ∈ A such that z1bi + z2q = 1. The polynomial z1big(x) + z2qfi(x) ∈ A[x] is 
monic of degree i, and (z1big(π) + z2qfi(π))/qbi ∈ E . Since the largest exponent of π in 
z1big(π) + z2qfi(π) is i, there exist a0, . . . , ai ∈ A such that
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z1big(π) + z2qfi(π)
qbi

= a0 + a1
f1(π)
b1

+ · · · + ai
fi(π)
bi

.

Multiplying both sides by biq, we get an equation in A[π] where the left hand side is 
a monic polynomial in π of degree i, while the right hand side has degree i in π and 
leading coefficient aiq. This implies that π satisfies a polynomial in A[x] of degree less 
than r, contradicting (1.1). Hence every prime divisor of b is also a divisor of bi. Write 
b = x1y1 and bi = x2y2z, where x1 and x2 have the same prime divisors, y1 and y2 have 
the same prime divisors, x2 | x1, y1 | y2, and gcd(x1, y1) = gcd(x2, y2) = gcd(x2, z) =
gcd(y2, z) = 1. As earlier, since g(π)/b ∈ E , we can write

g(π)
x1y1

= a0 + a1
f1(π)
b1

+ · · · + ai
fi(π)
x2y2z

.

After multiplying both sides by x1y2z, the coefficient of πi on the left hand side of the re-
sulting equation is y2z/y1, whereas on the right hand side the corresponding coefficient is 
aix1/x2. Since x1/x2 is coprime to y2z/y1, x1 and x2 must be equal, up to multiplicative 
units. Since y1 | y2, we see that b divides bi. �
Remark 3.2. The condition fi(π) ∈ biE means that we have an equality fi(π) = uφbi in 
k{τ} for some u ∈ E . From this it is obvious that fi(π) acts as 0 on φ[bi]. Conversely, it 
is not hard to prove that if b is coprime to p and g(π) acts as 0 on φ[b], then g(π) ∈ bE ; 
see the proof of Theorem 1.2 in [10]. Hence the previous theorem essentially says that 
bi ∈ A is the element of largest degree such that π acting on φ[bi] satisfies a polynomial 
of degree i, whereas the minimal polynomial of π acting on any Tate module Tl(φ) has 
degree r.

Now suppose φ is the reduction at p of a Drinfeld module Φ over F . Let n ∈ A be a 
polynomial not divisible by p. Assume r is coprime to the characteristic of F . In [10], 
we proved a reciprocity law which says that p splits completely in the Galois extension 
F (Φ[n]) of F if and only if n divides both b1 and ar−1 +r, where ar−1 is the coefficient of 
xr−1 in the minimal polynomial of π. The starting point of the proof of this result is the 
observation that we have an isomorphism Φ[n] ∼= φ[n] compatible with the action of the 
Frobenius at p on Φ[n] and the action of π on φ[n]. Then the proof proceeds by showing 
that π acts as a scalar on φ[n] if and only if n | b1. As follows from the previous paragraph, 
this last fact is a special case of Theorem 3.1. Thus, Theorem 3.1 is a refinement of our 
reciprocity law in the sense that we give a Galois-theoretic interpretation of all bi’s, not 
just b1. Moreover, as we will see Section 4, b1, . . . , br−1 appear in a matrix representing 
the Frobenius at p in Gal(F (Φ[n])/F ) ⊆ GLr(A/nA).

Theorem 3.1 can be used to give an efficient algorithm for computing the Frobenius 
index of a Drinfeld module and an A-basis of its endomorphism ring. The algorithm has 
two main steps.

Step 1. Let φ be a Drinfeld module of rank r over k given in terms of φT ∈ k{τ}. Let 
B be the integral closure of A in K.
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Start by computing the minimal polynomial P (x) ∈ A[x] of π over A. (Note that 
under our assumption (1.1), P (x) is also the characteristic polynomial of the Frobenius 
automorphism α �→ α#k of Gal(k̄/k) acting on Tl(φ) for any l �= p.) When k = Fp, 
computing P (x) is relatively easy and quick; see [10, §5.1]. When [k : Fp] > 1, this 
calculation becomes more involved. An algorithm for computing P (x) for r = 2 and 
arbitrary k is described in [13, §3]. For general k and r, one can compute P (x) using the 
following effective, but rather inefficient, method. One knows that P (x) =

∑r1
i=0 cix

i ∈
A[x] is a monic polynomial of degree r1 | r (our assumption (1.1) is equivalent to r1 = r); 
moreover, from the analogue of the Riemann hypothesis for Drinfeld modules, one can 
deduce that deg(ci) ≤ [k : Fq](r1 − i)/r for all 0 ≤ i ≤ r1 − 1. This gives finitely many 
possibilities for P (x), so, after arranging these polynomials by increasing degrees, one 
can simply go through this list, and the first polynomial that satisfies P (π) = 0 will be 
the minimal polynomial.

Next, compute the index χ(B/A[π]). There are known algorithms for computing a 
basis of the integral closure of A in a field extension of F given by an explicit polynomial 
(the polynomial in our case is P (x)); such an algorithm is implemented in Magma. The 
index χ(B/A[π]) can be computed by expressing π in a given A-basis of B. Alternatively, 
if K/F is separable, then χ(B/A[π]) can be computed from disc(A[π]) and disc(B), since 
by (2.1)

disc(A[π]) = χ(B/A[π])2 · disc(B).

(In fact, for our purposes, it is enough to have an upper bound on χ(B/A[π]) which is 
already provided by disc(A[π]).)

Having computed the index χ(B/A[π]), one can produce a finite list of possible Frobe-
nius indices (b1, . . . , br−1). Indeed, by (2.2),

χ(B/A[π]) = χ(B/E) · χ(E/A[π]),

and χ(E/A[π]) = (
∏r−1

i=1 bi) divides χ(B/A[π]). We get further constrains on possible 
(b1, . . . , br−1) from the divisibilities (cf. Proposition 2.3)

bi | bj , 1 ≤ i < j ≤ r − 1,

bibj | bi+j , i + j < r,

if 0 < deg(b1), then deg(b1) < deg(b2) < · · · < deg(br−1),

b
r(r−1)
1 | disc(A[π]).

We arrange all possible (b1, . . . , br−1) by the degrees of products 
∏r−1

i=1 bi, from the highest 
to zero.

Step 2. Starting with the first entry in our list of possible (b1, . . . , br−1), check if 
for all i = 1, . . . , r − 1 there are polynomials fi(x) ∈ A[x], degx(fi(x)) = i, such that 
fi(π) ∈ biE .
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Given a polynomial

g(x) = xs + as−1x
s−1 + · · · + a0,

checking whether g(π) ∈ bE can be done as follows. First, compute the residue of πs +
φas−1π

s−1 + · · ·+φa0 modulo φb using the right division algorithm in k{τ}. If the residue 
is nonzero, then g(π) /∈ bE . If the residue is 0, then g(π) = uφb for an explicit u ∈ k{τ}
produced by the division algorithm. Now check if the commutation relation uφT = φTu

holds in k{τ}; this relation holds if and only if u ∈ E .
Since we can assume that the coefficients of fi(x) ∈ A[x] have degrees < deg(bi) (as 

polynomials in T ), there are only finitely many possibilities for fi(x). If for some possible 
choice of f1, . . . , fr−1 we have fi(π) ∈ biE , then (b1, . . . , br−1) is the Frobenius index of φ. 
If none of the choices of f1, . . . , fr−1 work, then (b1, . . . , br−1) is not the Frobenius index 
and we move to the next possible Frobenius index. Since one of (b1, . . . , br−1)’s is the 
actual Frobenius index, this step will eventually find it. (There can be several “candidate” 
Frobenius indices satisfying the necessary condition of this step, i.e., the existence of 
fi’s. One can distinguish the actual Frobenius index among these “candidate” Frobenius 
indices using the maximality property of Frobenius indices given by Theorem 1.1. Since 
we have arranged the list of possible Frobenius indices by decreasing degrees of 

∏r−1
i=1 bi, 

we always find the actual Frobenius index first.)
Finally, having determined the Frobenius index (b1, . . . , br−1) of φ and the polynomials 

f1, . . . , fr−1 such that fi(π) ∈ biE , we compute an explicit A-basis of E in k{τ} by 
dividing fi(π) by φbi using the division algorithm for k{τ}.

We have implemented the above algorithm in Magma and computed the Frobenius 
indices and bases of endomorphism rings for various Drinfeld modules of rank r = 2
and 3. For rank 2 this algorithm corroborates the data found by our previous (different) 
algorithm [10]. For rank 3, we have found many examples where b1 and b2 have positive 
degrees.

Example 3.3. Let q = 5, r = 3, p = T 6+3T 5+T 2+3T+3, and k = Fp. Let φ : A → Fp{τ}
be given by

φT = t + tτ + tτ2 + τ3,

where t denotes the image of T under the canonical reduction map A → Fp. The minimal 
polynomial of π is

P (x) = x3 + 2T 2x2 + (3T 4 + T 2 + 3T + 1)x + 4p

From this we compute that

disc(A[π]) = (T + 4)6(T 4 + 2T 3 + 4T 2 + 3T + 4),

disc(B) = (T 4 + 2T 3 + 4T 2 + 3T + 4).
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Hence χ(B/A[π]) = (T + 4)3. We deduce that either b1 = T + 4 and b2 = (T + 4)2, 
or b1 = 1 and b2 = (T + 4)n for some 0 ≤ n ≤ 3. The second step of our algorithm 
confirms that in fact b1 = T + 4 and b2 = (T + 4)2. In particular, E = B. Moreover, the 
corresponding polynomials are f1(x) = x + 4 and f2(x) = (x + 4)2. An A-basis of E is 
given by

e1 = 1, e2 = π + 4
T + 4 , e3 = e2

2.

Finally, the element in Fp{τ} corresponding to e2 is

e2 = τ3 + (2t5 + 3t4 + t + 1)τ2 + (4t3 + 2t + 3)τ + t5 + 4t4 + 4t3 + 4t2 + 3.

Example 3.4. Let q = 7, r = 3, p = T 5+T 4+4T 3+2T 2+1, and k = Fp. Let φ : A → Fp{τ}
be given by φT = t + tτ + tτ2 + τ3, where t denotes the image of T under the canonical 
reduction map A → Fp. In this case, P (x) = x3+(3T +3)x2+(6T 3+5T 2+3T +6)x +6p, 
b1 = 1, b2 = T + 6, and f1(x) = x, f2(x) = x2 + x + 1.

Remark 3.5. In [15], Kuhn and Pink gave a different algorithm for computing Endk(φ). 
They work in the most general setting where A is a finitely generated normal integral 
domain of transcendence degree 1 over a finite field Fq, k is an arbitrary finitely generated 
field, and no restrictions on D are imposed. On the other hand, the emphasis of [15] is 
on the existence of a deterministic algorithm that computes Endk(φ) rather that its 
practicality, so some of the details of the algorithm are left out.

In the case where A = Fq[T ] and k is finite, the approach of Kuhn and Pink is the 
following. Consider k{τ} as a free module of finite rank over R := Fq[π]. (Note that 
R is the center of k{τ}). Choose an R-basis of k{τ}. For example, if n = [k : Fq] and 
α0, . . . , αn−1 is an Fq-basis of k, then {βij := αiτ

j | 0 ≤ i, j ≤ n − 1} is a basis of 
k{τ} over R. Express φT ∈ k{τ} in terms of this basis φT =

∑
0≤i,j≤r−1 mijβij . Let 

u =
∑

0≤i,j≤r−1 xijβij , where xij are indeterminates. Now u ∈ Endk(φ) if and only if 
uφT = φTu. This leads to a system of linear equations in xij ’s (note that βij ’s do not 
commute with each other, so expanding both sides uφT = φTu in terms of the chosen 
basis leads to nontrivial linear equations for xij). Choosing a basis for the space of 
solutions of the resulting system of linear equations gives a basis e1, . . . , es ∈ k{τ} of 
Endk(φ) as an R-module. Next, one computes the action of φT on this basis, which gives 
an explicit matrix for the action of φT as an R-linear transformation of Endk(φ). It is 
then claimed in [15] (proof of Proposition 5.14) that this calculation yields a basis of 
Endk(φ) as an A-module, although the details of this deduction are not explained. We 
have not pursued this line of calculations, so we are unable to say how complicated it is 
in practice, and whether it suffices for deducing the finer number-theoretic properties of 
Endk(φ), such as its discriminant over A or the Frobenius index.
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4. Matrix of the Frobenius automorphism

Let the notation and assumptions be as in Section 3. In particular, φ is a Drinfeld 
module of rank r over a finite extension k of Fp, and φ satisfies (1.1). Moreover, E =
Endk(φ), A[π] ⊂ E is the suborder generated by the Frobenius endomorphism of φ, and 
B is the integral closure of A in F (π).

Let

P (x) = xr + cr−1x
r−1 + · · · + c1x + c0

be the minimal polynomial of π over A, and

fi(x) = xi +
i−1∑
j=0

aijx
j , 1 ≤ i ≤ r − 1

be the polynomials from Theorem 2.1. Multiplication by π induces an A-linear transfor-
mation of E . The matrix of this transformation with respect to the basis in Theorem 2.1
has the form

Fk :=

⎡
⎢⎢⎢⎢⎢⎣

−a10 ∗ · · · ∗ ∗
b1 a10 − a21 · · · ∗ ∗
0 b2

b1
a21 − a32 ∗ ∗

...
. . .

0 0 · · · br−1
br−2

ar−1,r−2 − cr−1

⎤
⎥⎥⎥⎥⎥⎦ . (4.1)

(If E = A[π], then b1 = · · · = br−1 = 1, all aij = 0, and Fk is simply the companion 
matrix of P (x).) The entries of Fk marked by ∗ are complicated expressions in the 
coefficients of fi and P .

Example 4.1. For r = 2, the full matrix is 
[
−a10

−a10(a10−c1)−c0
b1

b1 a10 − c1

]
. Assume now that 

r = 2 and q is odd. Let Δ = disc(E), so that E = A +
√

ΔA. Then A[π] = A + b1
√

ΔA. 
Thus, π = α + b1

√
Δβ with α, β ∈ A. This implies (π − α)/b1 ∈ E , so α = −a10. Now

π2 = (α + b1
√

Δβ)2 = (α2 + b21Δβ2) + 2αβb1
√

Δ,

and also π2 + c1π + c0 = 0. Therefore,

(α2 + b21Δβ2) + 2αβb1
√

Δ + c1α + c1b1
√

Δβ + c0 = 0,

which implies (2α + c1)b1β
√

Δ = 0. Thus, α = −c1/2. Combining this with our earlier 
observation, we obtain a10 = c1/2, which, when substituted into the matrix of the 



158 S. Garai, M. Papikian / Journal of Number Theory 237 (2022) 145–164
Frobenius, gives 
[
− c1

2 (c21/4 − c0)/b1
b1 − c1

2

]
. On the other hand, c21−4c0 = disc(A[π]) = b21Δ. 

Therefore,

Fk =
[
− c1

2
b1·disc(E)

4
b1 − c1

2

]
.

Example 4.2. For r = 3, the full matrix is

⎡
⎢⎣−a10

a10(a21−a10)−a20
b1

a10a21(a21−c2)−a10(a20−c1)−a20(a21−c2)−c0
b2

b1 a10 − a21
(a20−c1)−a21(a21−c2)

b2/b1

0 b2
b1

a21 − c2

⎤
⎥⎦ . (4.2)

As an explicit example, the matrix corresponding to Example 3.3 is

⎡
⎣ 1 0 T 4 + T 2 + 2T + 1
T + 4 1 2T 3 + 2T 2 + 2T + 4

0 T + 4 3(T 2 + 1)

⎤
⎦ , (4.3)

and the matrix corresponding to Example 3.4 is

⎡
⎣0 6 T 4 + 2T 3 + 6T 2 + T + 4

1 6 T 2 + 3T + 3
0 T + 6 4T + 5

⎤
⎦ .

Remark 4.3. Even though fractions appear in Fk, all entries of this matrix are in A. 
This implies that there are non-obvious congruence relations between the coefficients of 
fi, P , and the Frobenius indices bj . For example, from (4.2) we get a10(a21 − a10) ≡
a20 (mod b1). Also note that by Proposition 2.3, b1 divides all bi/bi−1, 2 ≤ i ≤ r − 1, 
appearing below the main diagonal in Fk, so if n | b1, then Fk is upper-triangular modulo 
n. In fact, it follows from Theorem 3.1 in [10] that if n | b1 then Fk modulo n is a scalar 
matrix.

Let l � A be a prime different from p. The arithmetic Frobenius automorphism 
Frobk ∈ Gal(k̄/k) naturally acts on Tl(φ). Let chk(x) ∈ Al[x] denote the character-
istic polynomial of Frobk ∈ AutAl

(Tl(φ)) ∼= GLr(Al). The conjugacy class of Frobk in 
AutFl

(Tl(φ) ⊗ Fl) ∼= GLr(Fl) is uniquely determined by chk(x) because Tl(φ) ⊗ Fl is a 
semi-simple Fl[Frobk]-module; cf. [23]. On the other hand, chk(x) alone is not sufficient 
for determining the conjugacy class of Frobk in AutAl

(Tl(φ)).

Theorem 4.4. Assume Tl(φ), under the natural action of El := E ⊗A Al, is a free module 
of rank 1. Then the matrix Fk describes the action of Frobk on Tl(φ), with respect to a 
suitable Al-basis.
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Proof. The action of Frobk on Tl(φ) agrees with the action induced by π ∈ E . If the 
assumption of the theorem holds, then there is an isomorphism Tl(φ) ∼= El compatible 
with the actions of π on both sides. For the choice of a basis of E from Theorem 2.1, π
acts on E by the matrix Fk. �
Remark 4.5. Note that El⊗Fl is a semi-simple Fl-algebra which acts faithfully on Tl(φ) ⊗
Fl, so Tl(φ) ⊗Fl is free of rank 1 over El ⊗Fl. On the other hand, as we will see later in 
this section, Tl(φ) is not always free over El. Also note that in our case the characteristic 
polynomial chk(x) is the minimal polynomial P (x) of π over A.

Let Φ : A → F{τ} be a Drinfeld module of rank r over F . Let p be a prime of 
good reduction of Φ. Denote by φ the reduction of Φ modulo p. Let E = EndFp

(φ) and 
A[π] ⊂ E be its suborder generated by the Frobenius endomorphism π = τdeg(p) of φ. 
Note that since we are working over the field Fp, the assumption (1.1) is satisfied for φ; 
cf. [10, Prop. 2.1]. Denote by F(p) the matrix (4.1) for φ over Fp.

Theorem 4.6. Let n ∈ A be a nonzero element not divisible by p. The Galois extension 
F (Φ[n])/F is unramified at p. Suppose for every prime l �A dividing n the Tate module 
Tl(φ) is a free El-module of rank 1. Then the integral matrix F(p), when reduced modulo 
n, represents the class of the Frobenius at p in Gal(F (Φ[n])/F ) ⊆ GLr(A/nA).

Proof. The fact that p is unramified in F (Φ[n])/F is well-known, since p is a prime of 
good reduction for Φ and does not divide n; cf. [24]. In fact, by [24], the Tate module 
Tl(Φ) is unramified at p, i.e., for any place p̄ in F sep extending p, the inertia group 
of p̄ acts trivially on Tl(Φ). There is a canonical isomorphism Tl(Φ) ∼= Tl(φ) which is 
compatible with the action of a Frobenius element in the decomposition group of p̄ on 
Tl(Φ) and the action of the arithmetic Frobenius automorphism Frobp ∈ Gal(Fp/Fp) on 
Tl(φ); cf. [24, p. 479]. On the other hand, the action of Frobp on Tl(φ) agrees with the 
action induced by π ∈ E .

If the assumption of the theorem holds, then there is an isomorphism φ[n] ∼= E/nE
compatible with the actions of π on both sides. For the choice of a basis of E from The-
orem 2.1, π acts on E/nE ∼= (A/nA)r by the matrix F(p) reduced modulo n. Combining 
this with the isomorphism Φ[n] ∼= φ[n] compatible with the action of the Frobenius au-
tomorphism on both sides, we see that F(p) (mod n) indeed represents the class of the 
Frobenius at p in Gal(F (Φ[n])/F ) ⊆ GLr(A/nA). �
Remark 4.7. Theorems 4.4 and 4.6 are analogues of a result of Duke and Tóth [8] for 
elliptic curves (see also Theorems 2 and 3 in [3]).

Theorem 4.6 essentially says that the matrix F(p) ∈ Matr(A) is a “universal” matrix 
of the Frobenius automorphism at p in the division fields of Φ, in the sense that to 
get a matrix in the conjugacy class of the Frobenius in the Galois groups of different 
division fields F (Φ[n]) we just need to reduce F(p) modulo the correspond n. But there 
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is a technical assumption in the theorem about the freeness of the Tate modules of φ as 
modules over the endomorphism ring of φ. For the rest of this section we examine this 
assumption more carefully and show that it is a mild assumption, although quite subtle. 
Our considerations are motivated by [22, §4] and [3].

Definition 4.8. Let l �A be a prime. Let R be a finite flat local Al-algebra with maximal 
ideal M. Let R̄ = R/lR, and denote the maximal ideal of R̄ by M. The following 
statements are equivalent (see [25, Prop. 1.4], [2], [19, §18]):

1. HomAl
(R, Al) is free of rank 1 over R.

2. HomFl
(R̄, Fl) is free of rank 1 over R̄.

3. R̄[M] = {a ∈ R̄ | ma = 0 for all m ∈ M} is 1-dimensional over R/M.

We say that R is Gorenstein if it satisfies these conditions. We say that a finite flat (not 
necessarily local) Al-algebra R is Gorenstein if its localization at every maximal ideal is 
a Gorenstein local ring.

Theorem 4.9. Let l �A be a prime different from p. If El is a Gorenstein ring, then Tl(φ)
is a free El-module of rank 1.

Proof. The ring El is a finite flat Al-algebra. The module Tl(φ) is a torsion-free El-module. 
Suppose El is Gorenstein. Then by Theorem 6.2 and Proposition 7.2 in [2], either Tl(φ)
is a projective El-module or Tl(φ) is an E ′

l -module for some El � E ′
l ⊂ B ⊗A Al. Suppose 

the latter is the case. Let G := Gal(Fp/Fp). By [26, Thm. 2], we have an isomorphism

El ∼−→ EndAl[G](Tl(φ)). (4.4)

Since E ′
l ⊗ Fl = El ⊗ Fl and El ⊗ Fl

∼−→ EndFl[G](Tl(φ) ⊗ Fl), the action of E ′
l on Tl(φ)

has to commute with the action of G. Hence E ′
l ⊆ EndAl[G](Tl(φ)) = El. This contradicts 

our earlier assumption. We conclude that Tl(φ) is a projective El-module. Since El is 
a semilocal ring, a projective module over El is free by [19, Thm. 2.5 ]. In particular, 
Tl(φ) is free. Finally, since the ranks of Tl(φ) and El over Al are the same, Tl(φ) is a free 
El-module of rank 1. �
Proposition 4.10. Suppose one of the following conditions holds:

1. El = Al[π].
2. r = 2.
3. El = B ⊗A Al.

Then El is Gorenstein. In particular, if l does not divide χ(E/A[π]) or χ(B/E), then El
is Gorenstein.
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Proof. (1) If El is generated over Al by one element, then El is Gorenstein; cf. [25, p. 
329]. (2) If r = 2, then El is obviously generated by one element (any of the elements 
which is not in Al ⊂ El). (3) B ⊗A Al is a product of discrete valuation rings, and such 
rings are Gorenstein (see again [25, p. 329]). �
Example 4.11. Let q = 5 and Φ : A → F{τ} be given by ΦT = T +Tτ +Tτ2 + τ3. Every 
prime of A is a prime of good reduction for Φ. Take p = T 6 + 3T 5 + T 2 + 3T + 3. Then 
φ, the reduction of Φ modulo p, is the Drinfeld module from Example 3.3. We showed 
that in this case E = B, so the assumption of Theorem 4.6 is satisfied for every prime 
l �= p. Note that the matrix (4.3), which is F(p) associated to φ, is congruent to the 
identity matrix modulo n if and only if n = T + 4. This means that p splits completely 
in F (Φ[n]) if and only if n = T + 4.

Example 4.12. We give an example where El is not Gorenstein by changing p in Exam-
ple 4.11. Let Φ be as in that example, but φ be the reduction of Φ modulo

p = T 6 + 4T 4 + 4T 2 + T + 1.

The minimal polynomial of π is

P (x) = x3 + 2T 2x2 + (3T 4 + 2T 3 + 2T 2 + 1)x + 4p,

and

disc(A[π]) = (T + 4)6(T 4 + 3T 3 + T 2 + 2),

disc(B) = T 4 + 3T 3 + T 2 + 2.

Our algorithm shows that

b1 = 1, b2 = T + 4, χ(E/A[π]) = T + 4, χ(B/E) = (T + 4)2,

and an A-basis of E is given by

e1 = 1, e2 = π + 4, e3 = (π + 4)2

T + 4 .

(Although we will not need this, an A-basis of B is given by e1, e2/(T + 4), e3/(T + 4).)
Let l = T +4. We claim that El is not Gorenstein. By a routine calculation one obtains 

the relations

e2
2 = (T + 4)e3

e2
3 = (T + 1)(T + 3)(T + 4)2(T 2 + 2)e1 + (T + 4)(T 3 + 3T + 2)e2 + (T + 4)T 2e3

e2e3 = (T + 3)(T + 4)2(T 2 + 2)e1 + 2(T + 2)(T + 4)2e2 + 3(T + 1)(T + 4)e3.
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From this it is easy to see that El is local with maximal ideal M = (l, e2, e3). To prove that 
El is not Gorenstein, we check (3) from Definition 4.8. In our case, Ēl = Fl +Flē2 +Flē3, 
M = (ē2, ̄e3), and

ē2
2 = ē2

3 = ē2ē3 = 0. (4.5)

Hence Ēl[M] = M is two-dimensional over Fl, so El is not Gorenstein.
Of course, the fact that R := El is not Gorenstein does not necessarily imply that 

M := Tl(φ) is not free over R. For that, one needs an additional calculation. By a 
standard argument involving Nakayama’s lemma one shows that M is a free R-module 
of rank 1 if and only if M̄ = M/lM = φ[l] is a free R̄ = R/lR-module of rank 1. We need 
to compute the action of R̄ on φ[l] as a 3-dimensional vector space over A/l ∼= F5.

Now φ[l] is the set of roots of the polynomial φl(x) = x125+tx25+tx5+(t +4)x ∈ Fp[x], 
where t is the image of T in Fp. This polynomial decomposes over Fp into a product 
of irreducible polynomials all of which have either degree 1 or degree 5. One of the 
irreducible factors of φl(x) of degree 5 is g(x) = x5 +(3t3 +2t2 +2t)x + t5 +3t4 +3t2 +2t. 
Let α be a root of g(x). Then the splitting field of φl(x) is Fp(α). The following is an 
F5-basis of φ[l] in Fp(α):

v1 = t5 + 2t3 + t2 + 3, v2 = α, v3 = α + t5 + 3t3 + 4t.

(We simply chose three, more-or-less random, roots v1, v2, v3 of φl(x) and verified that 
they are linearly independent over F5.) To compute the action of e2 and e3 on φ[l] we 
use their explicit expressions in Fp{τ} provided by our algorithm

e2 = τ6 + 4

e3 = τ9 + (3t5 + 2t3 + 2t2 + 1)τ8 + (t5 + t4 + 4t3 + 4t2 + t + 3)τ7

+ (3t5 + t4 + 2t2 + 3t + 1)τ6 + (2t5 + 3t4 + 3t3 + t2 + 3)τ5

+ (3t4 + 2t3 + 2t + 4)τ4 + (4t5 + t2 + 3t + 2)τ3 + (2t4 + t3 + t2 + 4t + 4)τ2

+ (3t5 + t4 + 3t3 + 4t2 + t + 1)τ + 4t5 + 4t4 + t.

With respect to the basis {v1, v2, v3} (as column vectors), e2 and e3 correspond to the 
following matrices:

ē2 =
[0 0 0

0 3 3
0 2 2

]
, ē3 =

[0 0 0
4 3 3
1 2 2

]
.

M̄ is a free R̄-module of rank 1 if and only if there is a vector v ∈ F3
5 such that 

v, ̄e2v, ̄e3v are linearly independent over F5. It is easy to check that such a vector does 
not exist. Thus, in this example we encounter the strange phenomenon where Tl(φ) is 
not free over El. Note also that one can consider φ as a Drinfeld E-module of rank 1 in 
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the sense of Hayes [14, p. 180], and our calculation shows that, unlike the usual Drinfeld 
modules, φ[l] is not isomorphic to E/lE as an E-module.

Remark 4.13. The matrix F(p) for the previous example is

F(p) =

⎡
⎣0 4 (T + 4)2(T 3 + 3T 2 + 2)

1 2 2(T + 2)(T + 4)2
0 T + 4 3(T + 2)(T + 3)

⎤
⎦

Hence F(p) ≡
[0 4 0

1 2 0
0 0 1

]
(mod l). With respect to the basis {v1, v2, v3} of φ[l], the action 

of π on φ[l] is given by 

[1 0 0
0 4 3
0 2 3

]
, which is conjugate to F(p) mod l in GL3(F5). Thus, 

the conclusion of Theorem 4.6 is still valid for n = T + 4, even though its assumption 
fails.
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