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The Many Roles of Principal Component Analysis

Principal Component Analysis is an essential tool in high dimensional
data analysis

What is PCA?
How does PCA uncover patterns in high dimensional data?
Can we interpret the principal component (eigen) vectors?
Aligning the principal components with the known patterns in the
data.
Generalizations of principal components.
Other useful principal components.
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What is PCA?

Spatial Patterns
Suppose we have spatial patterns that “generate” our data.
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What is PCA?

Spatial Patterns
The ideal data are a time evolution of these patterns.
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What is PCA?

Spatial Patterns
The observed data are a time evolution of these patterns plus noise.
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What is PCA?

Spatial Patterns
Principal components analysis is often used as a means of uncovering
the underlying component patterns.

What happens when the data are the actual PCs?

1 2 3 4 5 6

1
2

3
4

5
6

1 2 3 4 5 6

1
2

3
4

5
6

Pattern

PC

1 2 3 4 5 6

1
2

3
4

5
6

1 2 3 4 5 6

1
2

3
4

5
6

Altman (Penn State) Generalizing PCA February 17, 2015 6 / 33



What is PCA?

Spatial Patterns
Principal components analysis is often used as a means of uncovering
the underlying component patterns.
What happens when the data are the actual PCs?

1 2 3 4 5 6

1
2

3
4

5
6

1 2 3 4 5 6

1
2

3
4

5
6

Pattern

PC

1 2 3 4 5 6

1
2

3
4

5
6

1 2 3 4 5 6

1
2

3
4

5
6

Altman (Penn State) Generalizing PCA February 17, 2015 6 / 33



What is PCA?

Spatial Patterns
Principal components analysis is often used as a means of uncovering
the underlying component patterns.
What happens when the data are the actual PCs?

1 2 3 4 5 6

1
2

3
4

5
6

1 2 3 4 5 6

1
2

3
4

5
6

Pattern

PC

1 2 3 4 5 6

1
2

3
4

5
6

1 2 3 4 5 6

1
2

3
4

5
6

Altman (Penn State) Generalizing PCA February 17, 2015 6 / 33



What is PCA?

Spatial Patterns
What happened when the data are the actual PCs?

Principal components must be uncorrelated.

The 2 original patterns had correlation 0.6.

Only 2 PCs can be found (since there are only 2 time points). But they
might not be the original patterns.

However, the original patterns are linear combinations of the 2 PCs.
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What is PCA?

Spatial Patterns
What happens when the data are the noise-free linear combinations of
the 2 PCs "evolving" over time?
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What is PCA?

Spatial Patterns
PCs from the noise-free linearly evolving patterns
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What is PCA?

Computing the Principal Components

In the context of climate data:

Some variable (e.g. sea level pressure) has been interpolated to a
spatial grid.
“Observations" have been averaged to a discrete set of times at
each grid point.
At each grid point, the time average of the variable is subtracted off.
A data matrix X is formed by stringing out the 2-D (or even 3-D)
spatial data into the columns.
Each time point is a row.
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What is PCA?

Computing the Principal Components

In the context of climate data:

The area-weighted (empirical) covariance matrix of the spatial data
is computed.
V = X>AX where A is a diagonal matrix of areas.
To avoid notation problems, we are going to replace X by X

√
(A),

so we can write V = X>X .
The ordered eigenvectors of the covariance matrix are the principal
components.
The eigenvalues are the variance of the projection of the
area-weighted data on the principal components.

Notice that the spatial information is not used - only variability over time.
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What is PCA?

Elliptical Distributions
For elliptical distributions, the PCs are the major axes of the density
ellipsoid.
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Finding Patterns in Data

The Latent Factor Model
Suppose we have r “spatial patterns" the latent factors.
These patterns are the oscillations or modes of variation.
Each pattern can be summarized by a number at each location.
This leads to an r × p matrix Q with r < p and full rank r .

At any given time t there is a weighting vector ct and we observe
µ+ c>

t Q + εt at the locations, where µs is the field mean at location
s and εt is a noise component uncorrelated with ct .
PCA treats the ct ’s as independent random vectors with unit
variance.
The ct ’s for the n observation times are then accumulated into an
n × r matrix C and the εt ’s are accumulated into an n × p noise
matrix.
Then the centered data are X = CQ + ε.
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Finding Patterns in Data

The Latent Factor Model
Under the assumption

X = CQ + ε

we have

(n − 1)Var(X ) = E(X>X ) = Q>Q + σ2
ε I

PCA can “recover” Q in the sense that an spatial pattern that is a linear
combination of the r latent factors can also be expressed as a linear
combination of the first r principal components.

This is because the r eigenvectors of Q associated with the non-zero
eigenvalues are also eigenvectors of Var(X).

And the eigenvalues of Q>Q + σ2
ε I are the eigenvalues of Q>Q + σ2

ε .

BUT the eigenvectors of Q>Q are NOT the columns of Q.
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Finding Patterns in Data

Empirical PCA
The result on the previous slide used the “expected value" of the sample
variance which we do not get to see.

We have only the observed value X>AX .

It turns out we do not need to appeal to large sample theory to use
empirical PCA.

This is because of the properties of the singular value decomposition
(SVD).
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Finding Patterns in Data

Singular Value Decomposition
Let M be an n × p matrix.
Then M = udv> where

u is n × n orthonormal (left singular vectors).
d is n × p upper diagonal with d1 ≥ d2 · · · dp ≥ 0 (singular values).
v is p × p orthonormal (right singular vectors).
If the singular values are unique then u and v are well-defined.

SVD and empirical PCA

Let X be the centered data matrix with SVD X = udv>.
X>X = vd2v> so:

The principal components of X are the right singular vectors of X .
The variances associated with the principal components are the
squares of the singular values of X .
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Finding Patterns in Data

Principal components analysis is effective at finding patterns in data
because of two strongly related properties of the right singular vectors of
X .
Let B n × k and W p × k both have rank k .
For a matrix M let M[+k ] be the matrix of the first k columns of M.

Matrix nearness and SVD

A pair minimizing ‖ X − BW> ‖ is W = v [+k ] and B = Xv [+k ].

Latent variable regression

A pair minimizing ‖ X − XBW> ‖ is B = W = v [+k ].

Furthermore

‖ X − Xv [+k ]v [+k ]> ‖2=

p∑
i=k+1

δ2
i

where δi are the singular values of X .
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Finding Patterns in Data

PCs, matrix nearness and prediction
Matrix nearness and SVD: The PC’s give the best low rank
approximation to the centered data.
Latent variable regression: The PC’s are the best predictors of X
(for given rank k ).

BUT ...
The matrix nearness and best predictor results are not unique. Replace
W = v [+k ] by WG for any invertible G.
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Finding Patterns in Data

Latent variable regression
Denoising

The last p − r principal components are essentially noise.
So Xv [+r ]v [+r ]> is a denoised version of X .
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Finding Patterns in Data

Latent variable regression
Missing value imputation

Regression of X on the first k principal components provides the best
possible linear predictor of X on any k -dimensional basis.
So imputing missing values by their predicted values provides the
best linear imputation.

Pattern searching

v1 · · · vk are a basis of the predictor space ordered by R2.
So, v1 could be thought of as the dominant signal in the data.
vi is the dominant signal orthogonal to the signals with higher SNR.
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Interpreting PCA

What are the PCs?
Problems arise when you try to interpret the PCs - especially the higher
order PCs.
For example, suppose there are 4 times with patterns 1,1,1,2 and no
noise.
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Interpreting PCA

What are the PCs?
Suppose instead there are 4 times with patterns 1,2,2,2 and no noise.
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Interpreting PCA

What are the PCs?
One idea is to use varimax rotations to “align" the PCs with the data.
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Interpreting PCA

What are the PCs?
These days statisticians use “sparse" PCA to force some of the loadings
to be zero.
This is done through a penalized latent variable regression.
This gave

PC1 = pattern 1, PC2 = pattern 2 for 1,1,1,2
PC1 = pattern 2, PC2 = pattern 1 for 1,2,2,2
which is exactly correct.
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Latent variable regression

Latent variable regression provides a framework for extensions of PCA.

Extended PCA via regression

Minimum Distance SVD
Penalized PCA
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Extending PCA via regression

Minimum Distance
Robust PCA:

To reduce sensitivity to outliers, use robust regression instead of
least squares regression in the latent variable regression.
There is another form of robust PCA using the eigen-decomposition
of a robust variance estimator.

Minimum distance SVD

Replace L2 distance with another metric or divergence in the SVD
matrix nearness problem.

Bregman SVD (generalized PCA)

In linear exponential families, do uncentered SVD using Bregman
divergence (generalized linear model, MLE)

Maximum Likelihood SVD
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Latent variable regression

Extended PCA via regression

Penalized PCA

e.g. Sparse PCA (Zou, Hastie and Tibshirani, 2006)

Let xi be the i th row of the data matrix x .
Let A be an orthonormal n × k matrix.
Let W be an n × k matrix with rank k and columns Wi .

To extract k penalized “principal components” minimize:

n∑
i=1

‖ xi − xiAW> ‖2 +
k∑

i=1

Pλ(Wi )

This could also be put in the context of Bayesian models, for which
the penalty is the prior log-likelihood.

Related methods penalize W in the matrix nearness formulation.
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Latent variable regression

Extended PCA via regression

Kernel PCA

A set of nonlinear basis functions φi : <p → < is selected
i = 1 · · · p > P.
The Euclidean covariance matrix is replaced by the kernel covariance
matrix Σ̂ =

∑n
j=1 φ(xj )φ(xj )

> where xj is the j th row of the data matrix.
Kernel PCA finds a basis for approximating nonlinear functions of the
data.
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Other Ideas

Centering

Since the right singular vectors are the important quantities, should
we center?
It makes little difference to the fitted values, but affects
interpretation.
Discussed in detail in Cadima and Jolliffe(2009).

(0,0)
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Other Ideas

Other Matrix Factorizations
If the data are non-negative, non-negative matrix factorizations
(NMF) may be more interpretable.

This looks like (generalized) SVD with non-negativity constraints but
has some surprising properties (non-nested).
NMF tends to be sparse.
Can be used for clustering (similar to k-means).

Independent Component Analysis (ICA)
Factor Analysis
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Conclusions

PCA is excellent for finding a low dimensional basis for climate patterns.

Latent variable regression and matrix nearness (i.e. SVD) explain
many of the good properties of PCA.
Latent variable regression and matrix nearness unify methods for
extending PCA by using penalized versions or different norms.
Other matrix decompositions may be at least as useful - e.g.
various NMF methods.
Interpretation of the PCs as climate patterns or modes is not
scientifically justified.
If there are “known" patterns, regress these out and use PCA on
the residuals!
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