A THEOREM OF JARNIK

Theorem. (Jarník (1926); cf Bombieri & Pila (1989)) Let C be a simple closed curve in the plane, of arc length L. The number of 'lattice points' (m,n), $m,n \in \mathbb{Z}$, lying on C is at most L+1. If C is strictly convex, then the number of lattice points on C is $\ll 1 + L^{2/3}$, and this estimate is best-possible.

Proof. Let k be the number of lattice points on the curve. If k=0 or 1, then the problem is trivial. Thus we suppose that $k \geq 2$ throughout. We label the lattice points as $P_j = (m_j, n_j)$ $1 \leq j \leq k$ in order along the curve (for example clockwise starting from some convenient point) and define $P_0 = (m_0, n_0) = (m_k, n_k)$. Let $q_j = m_j - m_{j-1}$, $a_j = n_j - n_{j-1}$. Then the length of the curve from P_{j-1} to P_j is at least the length of the shortest distance between them, namely $(a_j^2 + q_j^2)^{1/2}$. Thus $\sum_{j=1}^k (a_j^2 + q_j^2)^{1/2} \leq L$. Moroever as the points P_j are distinct and the a_j and q_j are integers we have $(a_j^2 + q_j^2)^{1/2} \geq 1$ and so $k \leq L$.

Now suppose that \mathcal{C} is strictly convex. The ratio a_j/q_j (in the extended number system) represents the gradient of the straight line l_j joining P_{j-1} and P_j and these lines can be divided into four groups of of consecutive lines l_j according as $-1 \leq a_j/q_j < 1, q_j > 0$; $-1 \leq q_j/a_j < 1, a_j > 0$; $-1 \leq a_j/q_j < 1, q_j < 0$; $-1 \leq q_j/a_j < 1, a_j < 0$. The strict convexity implies that in each group the ratios are distinct (and indeed form a strictly monotonic sequence). Let k_i denote the number of members of the i-th group, so that $k_1 + k_2 + k_3 + k_4 = k$. Thus it suffices to show that $k_i \ll 1 + L^{2/3}$. Moreover we may suppose that $k_i \geq 4$. Since the ratios are distinct each one has a unique representation as a/q with $(a,q) = 1, q \geq 1$ and $-q \leq a < q$. Thus the number of members of the i-th group with denominator not exceeding Q in absolute value is bounded by $1 + \sum_{q \leq Q} 2q \leq 1 + 2Q^2$. Let $Q = \frac{1}{3}(k_i)^{1/2}$. Then $1 + 2Q^2 = 1 + \frac{2}{9}k_i \leq \frac{1}{2}k_i$. Hence for at least $\frac{1}{2}k_i$ of the ratios at least one of a_i or q_i exceeds $\frac{1}{3}(k_i)^{1/2}$ in absolute value. Hence $\frac{1}{2}k_i\frac{1}{3}(k_i)^{1/2} \leq \sum_{j=1}^k (a_j^2 + q_j^2)^{1/2} \leq L$ and it follows that $k_i \ll L^{2/3}$.

To show that this is best possible we observe that the number F(Q) of fractions a/q with $1 \le a \le q \le Q$ and (a,q) = 1 (the number of Farey fractions of order Q) is $\sum_{q \le Q} \phi(q) = \frac{3}{\pi^2} Q^2 + O(Q \log Q)$. Now consider the fractions a_j/q_j with $0 \le a_j \le Q$, $1 \le q_j \le Q$ and $(a_j,q_j) = 1$ indexed in increasing order, so that $0 = a_1/q_1 < a_2/q < \ldots$. Their number is $1 + F(Q) + \sum_{2 \le a_j \le Q} \phi(a_j) = 2F(Q) = \frac{6}{\pi^2} Q^2 + O(Q \log Q)$. We list these fractions in order as $0 < \frac{a_1}{q_1} < \frac{a_2}{q_2} < \ldots$. Then we construct points P_j by taking a suitable origin, e.g. $P_0 = (0,0)$ and define successively $P_j = P_{j-1} + (q_j,a_j)$. Let the last point constructed be P_J . We now add further points by taking the configuration of points just constructed, rotating it through 90° and moving P_0 to coincide with P_J . We then rotate and translate two more times to obtain a complete circuit of points. Now we join the points by line segments and consider the resulting convex polygon. The number of integer points on the curve is asymptotically $\frac{24}{\pi^2}Q^2$. The length of the curve is $4\sum_{1 \le q \le Q} \sum_{0 \le a \le Q, (a,q)=1} (a^2 + q^2)^{1/2} \ll Q^3$.

References

- E. Bombieri & J. Pila (1989). The number of integral points on arcs and ovals, Duke Math. J. **59**, 337–357.
- V. Jarník (1926). Über die Gitterpunkte auf konvexen Curven, Math. Z. ${\bf 24},\,500-518.$