A THEOREM OF JARNIK

Theorem. (Jarník (1926); cf Bombieri & Pila (1989)) Let \(C \) be a simple closed curve in the plane, of arc length \(L \). The number of ‘lattice points’ \((m, n), m, n \in \mathbb{Z}\), lying on \(C \) is at most \(L + 1 \). If \(C \) is strictly convex, then the number of lattice points on \(C \) is \(\ll 1 + L^{2/3} \), and this estimate is best-possible.

Proof. Let \(k \) be the number of lattice points on the curve. If \(k = 0 \) or 1, then the problem is trivial. Thus we suppose that \(k \geq 2 \) throughout. We label the lattice points as \(P_j = (m_j, n_j) \) \(1 \leq j \leq k \) in order along the curve (for example clockwise starting from some convenient point) and define \(P_0 = (m_0, n_0) = (m_k, n_k) \). Let \(q_j = m_j - m_{j-1} \), \(a_j = n_j - n_{j-1} \). Then the length of the curve from \(P_{j-1} \) to \(P_j \) is at least the length of the shortest distance between them, namely \((a_j^2 + q_j^2)^{1/2}\).

Thus \(\sum_{j=1}^{k} (a_j^2 + q_j^2)^{1/2} \leq L \). Moreover as the points \(P_j \) are distinct and the \(a_j \) and \(q_j \) are integers we have \((a_j^2 + q_j^2)^{1/2} \geq 1 \) and so \(k \leq L \).

Now suppose that \(C \) is strictly convex. The ratio \(a_j/q_j \) (in the extended number system) represents the gradient of the straight line \(l_j \) joining \(P_{j-1} \) and \(P_j \) and these lines can be divided into four groups of of consecutive lines \(l_j \) according as \(-1 \leq a_j/q_j < 1, q_j > 0; -1 \leq q_j/a_j < 1, a_j > 0; -1 \leq a_j/q_j < 1, q_j < 0; -1 \leq q_j/a_j < 1, a_j < 0 \). The strict convexity implies that in each group the ratios are distinct (and indeed form a strictly monotonic sequence). Let \(k_i \) denote the number of members of the \(i \)-th group, so that \(k_1 + k_2 + k_3 + k_4 = k \). Thus it suffices to show that \(k_i \ll 1 + L^{2/3} \). Moreover we may suppose that \(k_i \geq 4 \). Since the ratios are distinct each one has a unique representation as \(a/q \) with \((a, q) = 1, q \geq 1 \) and \(-q \leq a < q \). Thus the number of members of the \(i \)-th group with denominator not exceeding \(Q \) in absolute value is bounded by \(1 + \sum_{q \leq Q} 2q \leq 1 + 2Q^2 \). Let \(Q = \frac{1}{3}(k_i)^{1/2} \). Then \(1 + 2Q^2 = 1 + \frac{2}{3}k_i \leq \frac{1}{2}k_i \). Hence for at least \(\frac{1}{2}k_i \) of the ratios at least one of \(a_i \) or \(q_i \) exceeds \(\frac{1}{2}(k_i)^{1/2} \) in absolute value. Hence \(\frac{1}{2}k_i \ll \frac{1}{2}(k_i)^{1/2} \leq k_i \ll L^{2/3} \).

To show that this is best possible we observe that the number \(F(Q) \) of fractions \(a/q \) with \(1 \leq a \leq q \leq Q \) and \((a, q) = 1 \) (the number of Farey fractions of order \(Q \)) is \(\sum_{q \leq Q} \phi(q) = \frac{3}{\pi^2}Q^2 + O(Q \log Q) \). Now consider the fractions \(a_j/q_j \) with \(0 \leq a_j \leq Q, 1 \leq q_j \leq Q \) and \((a_j, q_j) = 1 \) indexed in increasing order, so that \(0 = a_1/q_1 < a_2/q_2 < \ldots \). Their number is \(1 + F(Q) + \sum_{2 \leq a_j \leq Q} \phi(a_j) = 2F(Q) + \frac{6}{\pi^2}Q^2 + O(Q \log Q) \). We list these fractions in order as \(0 < \frac{a_1}{q_1} < \frac{a_2}{q_2} < \ldots \).

Then we construct points \(P_j \) by taking a suitable origin, e.g. \(P_0 = (0, 0) \) and define successively \(P_j = P_{j-1} + (q_j, a_j) \). Let the last point constructed be \(P_j \). We now add further points by taking the configuration of points just constructed, rotating it through \(90^\circ \) and moving \(P_0 \) to coincide with \(P_j \). We then rotate and translate two more times to obtain a complete circuit of points. Now we join the points by line segments and consider the resulting convex polygon. The number of integer points on the curve is asymptotically \(\frac{24}{\pi^2}Q^2 \). The length of the curve is \(4 \sum_{1 \leq q \leq Q} \sum_{0 \leq a \leq Q, (a, q) = 1} (a^2 + q^2)^{1/2} \ll Q^3 \).
A THEOREM OF JARNIK

REFERENCES
