1. Rouché's Theorem

Theorem 1.1 (Estermann). Suppose that f and g are holomorphic on a domain \mathcal{D} , that \mathcal{C} is a simple closed contour in \mathcal{D} and that

$$|f(z) - g(z)| < |f(z)| + |g(z)|$$
(1.1)

for all $z \in C$. Then f and g have the same number of zeros inside C.

Proof. Clearly $f(z)g(z) \neq 0$ for $z \in C$. Let F(z) = g(z)/f(z) whenever $f(z) \neq 0$. Then for $z \in C$ we have |1 - F(z)| < 1 + |F(z)|. Le $\mathcal{L} = \mathbb{C} \setminus \{z \in \mathbb{R} : z \leq 0\}$. Then and for $z \in C$ we have $F(z) \in \mathcal{L}$. By considering the family of open disks $D(z, \delta_z)$ where $z \in C$ and $\delta_z > 0$ it follows that there is an open subset \mathcal{A} of \mathcal{D} such that $\mathcal{C} \subset \mathcal{A}$, $F(\mathcal{A}) \in \mathcal{L}$, and F is holomorphic on \mathcal{A} . Now we can define $G(z) = \log F(z)$ for $z \in \mathcal{A}$ so that G is holomorphic on \mathcal{A} and $G'(z) = \frac{F'}{F}(z)$. For example, take $G(z) = \log |F(z)| + i \arg F(z)$, the principal value of the logarithm. Now for $z \in \mathcal{C}$, $G'(z) = \frac{g'}{g}(z) - \frac{f'}{f}(z)$ and so

$$\frac{1}{2\pi i} \int_{\mathcal{C}} \left(\frac{g'}{g}(z) - \frac{f'}{f}(z) \right) dz = 0.$$

Corollary 1.1 (Rouché). Suppose that f and h are holomorphic on a domain \mathcal{D} , that \mathcal{C} is a simple closed contour in \mathcal{D} and that

$$|h(z)| < |f(z)| \tag{1.2}$$

for all $z \in C$. Then f and f + h have the same number of zeros inside C.

Proof. Let g(z) = f(z) + h(z) so that the hypothesis of the theorem is satisfied. Then f and g(z) = f(z) + h(z) have the same number of zeros inside C