Fundamental Groups and Limits of Almost Homogeneous Spaces.

Sergio Zamora

Penn State University

June 19, 2020
Group actions in metric spaces.

δ-transitive actions

$x \bullet \quad \bullet y$
Group actions in metric spaces.

δ-transitive actions

x, y
δ-transitive actions
Group actions in metric spaces.

δ-transitive actions

Discrete Actions
Group actions in metric spaces.

δ-transitive actions

Discrete Actions
Group actions in metric spaces.

Example

\[\pi_1(Y) \text{ acts } \delta \text{-transitively and discretely on } \tilde{Y}. \]
Definition

Let X_n be a sequence of proper metric spaces. We say that a sequence of groups Γ_n acts almost transitively on the sequence X_n if there are isometric actions $\Gamma_n \rightarrow Iso(X_n)$ which are δ_n-transitive and discrete, with $\delta_n \rightarrow 0$.
Main Problem

Let \((X_n, x_n)\) be a sequence of pointed proper length spaces converging to \((X, x)\) in the pointed Gromov Hausdorff sense. If we have a sequence of groups \(\Gamma_n\) acting almost transitively on the sequence \(X_n\), what can we say about the limit \(X\)?

Example:
Main Problem.

Example:
Let G be a nilpotent Lie group that admits lattices. Fix any left invariant metric in G

$$X_n := G, \ X = G, \ \Gamma_n \leq G \text{ lattices.}$$

Example:
Let Y_n be compact length spaces with $\text{diam}(Y_n) \to 0$.

$$\Gamma_n := \pi_1(Y_n, y_n), \ X_n := \tilde{Y}_n.$$

Some conditions on Y_n may ensure the existence of limit X, like $Y_n \in \text{Alex}^d(k)$, or $Y_n \in \text{CD}(k, d)$.
Main Problem.

Example:
Let G be a nilpotent Lie group that admits lattices. Fix any left invariant metric in G

$$X_n := G, \ X = G, \ \Gamma_n \leq G \text{ lattices.}$$

Example:
Let Y_n be compact length spaces with $diam(Y_n) \to 0$.

$$\Gamma_n := \pi_1(Y_n, y_n), \ X_n := \tilde{Y}_n.$$

Some conditions on Y_n may ensure the existence of limit X, like $Y_n \in Alex^d(k)$, or $Y_n \in CD(k, d)$.
Main Problem.

Example (Gromov-Pansu, 1983): Let Γ be a finitely generated group of polynomial growth and Y is its Cayley graph.

$$\Gamma_n := \Gamma, \ X_n := Y/n.$$

Then the limit is a simply connected nilpotent Lie group with a sub-Finsler Carnot metric.
Compact case.

Theorem (Turing, 1938)

If X, the limit, is a compact Lie group, then it is a finite dimensional torus.

Proof:

- By Peter-Weyl, X has a finite dimensional faithful representation $\rho : X \to GL(N, \mathbb{C})$.
- If GH approximations are good enough, we can extract from ρ, finite dimensional faithful representations $\rho_n : \Gamma_n \to GL(N, \mathbb{C})$.
- By Jordan’s Theorem, Γ_n are uniformly virtually abelian.
Compact case.

Theorem (Jordan, 1878)
If $\Gamma \leq GL(N, \mathbb{C})$ is discrete, generated by $\Gamma \cap B(Id, 1/10)$, then Γ is nilpotent.

Proof:
For $A, B \in B(Id, 1/10) \subset GL(N, \mathbb{C})$,

$$
\| [A, B] - 1 \| \leq \| AB - BA \| \| A^{-1} \| \| B^{-1} \|
\leq 4 \| A - 1 \| \| B - 1 \|.
$$

$$
0 = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_k = \Gamma.
$$
Compact case.

Theorem (Gelander, 2012)
If X, the limit, is compact, then it is a torus, i.e. homeomorphic to a finite or infinite product of circles.

Corollary
If X is a compact topological manifold, then it homeomorphic to a finite dimensional torus.
Non-compact case.

Theorem ♣, 2020
If X, the limit, is a topological manifold, then X is a nilpotent Lie group with a sub-Finsler metric. For large enough n, there are subgroups $\Lambda_n \leq \pi_1(X_n, x_n)$ with surjective homomorphisms

$$\Lambda_n \to \pi_1(X, x).$$

Remark
X is automatically a topological manifold if:
- X has finite topological dimension (Montgomery-Zippin, 1939).
- X is locally contractible (Berestovskii, 1990).
Lower Semicontinuity of π_1.

Theorem (Gromov?, 1970’s)

If Y_n is a sequence of compact length spaces converging to a compact semilocally simply connected length space Y, then for large enough n, there are surjective morphisms

$$\pi_1(Y_n, y_n) \rightarrow \pi_1(Y, y).$$

Example:

![Diagram](image)
Lower Semicontinuity of π_1.

Non-Example:
Semilocal simple connectedness is necessary:
Lower Semicontinuity of π_1.

Non-Example:
Compactness is necessary:
Lower Semicontinuity of π_1.

Theorem ♢
Let $X_n \to X$, and $\Gamma_n \to Iso(X_n)$ acting almost transitively. If X is a topological manifold, then X is a nilpotent Lie group with a sub-Finsler metric. For large enough n, there are subgroups $\Lambda_n \leq \pi_1(X_n, x_n)$ with surjective homomorphisms

$$\Lambda_n \to \pi_1(X, x).$$

Non-Example
Discreteness of Γ_n is necessary: Define $Y_n := n \mathbb{S}^3$, $Z = \mathbb{S}^1$. Take

$$X_n := (Y_n \times Z)/\mathbb{S}^1.$$

Then $X_n \cong \mathbb{S}^3$, but $X_n \to \mathbb{S}^1 \times \mathbb{R}^2$.
Proof that X is nilpotent Lie group.

- Γ_α, the ultralimit of Γ_n, acts transitively by isometries on X.
- X has a sub-Finsler metric (Berestovskii, 1990).
- X has uniformly bounded doubling at small scales (Nagel-Stein-Wainger, 1985).
- Γ_n are uniformly virtually nilpotent (Breuillard-Green-Tao, 2011).
- $\text{Iso}(X)$ is a Lie group (Montgomery-Zippin, 1939).
- Isometries of X are smooth (LeDonne-Ottazzi, 2016).
- Γ_α is connected and acts freely, hence $\Gamma_\alpha \cong X$.
Approximations.

Construct $\phi_n : \Gamma_n \to \text{Iso}(X)$. For $g \in \Gamma_n$, define $\phi_n(g)$.
Discrete Subgroups of Lie Groups.

We have small groups $H_n \triangleleft \Gamma_n$. Very informally:

$$H_n \approx \text{Ker}(\phi_n).$$

Γ_n/H_n near the identity are C-regular nilprogressions:

$$\star(u_1, \ldots, u_d; N_1, \ldots, N_d) := \{ u_1^{n_1} \ldots u_d^{n_d} \mid |n_i| \leq N_i \},$$

where $u_i \in \Gamma_n$, $N_i \in \mathbb{N}$, $d = \text{dim}(X)$.

$$(n_1, \ldots, n_d) \to u_1^{n_1} \ldots u_d^{n_d} \text{ is injective for } |n_i| \leq N_i.$$

For $i \leq j$,

$$[u_i, u_j] = u_{j+1}^{\beta_{i,j}^{j+1}} \ldots u_d^{\beta_{i,j}^d}, \quad |\beta_{i,j}^l| \leq C \frac{N_i N_j}{N_l}.$$

$$N_1 \ll \ldots \ll N_d.$$
\mathbb{Z}^2

$u_1 = (1, 0)$

$u_2 = (0, 1)$

$[u_1, u_2] = 0$

$H(\mathbb{Z})$

$u_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

$u_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$u_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$[u_1, u_2] = u_3^{-1}$
Malcev Theorem.

Theorem (Malcev, 1962)

If N_i’s are large enough, depending on d, C, then the C-regular nilprogression

$$\star(u_1, \ldots, u_d; N_1, \ldots, N_d)$$

can be embedded in a lattice of a nilpotent Lie group.

Corollary

The groups Γ_n/H_n are isomorphic to lattices of nilpotent Lie groups.
Informally:

\((\pi_1(X) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0)\).
Informally:

\((\pi_1(X) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0)\).
Informally:

\((\pi_1(X) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0)\).
Informally:

\((\pi_1(X) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0). \)
End of the proof.

Informally:

\((\pi_1(X) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0)\).
Informally:

\((\pi_1(X) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0)\).
Informally:

\[(\pi_1(X) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0).\]
Informally:

\((\pi_1(X) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0)\).
End of the proof.

Informally:

\((\pi_1(\mathcal{X}) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(\mathcal{X}_n) \neq 0)\).
End of the proof.

Informally:

\[\pi_1(X) \neq 0 \Rightarrow \Gamma_\alpha \text{ has torsion} \Rightarrow \Gamma_n/H_n \text{ has torsion} \Rightarrow \pi_1(X_n) \neq 0. \]
End of the proof.

Informally:

\[(\pi_1(X) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0).\]
Informally:

\[(\pi_1(X) \neq 0) \Rightarrow (\Gamma_{\alpha} \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0).\]
Informally:

\((\pi_1(X) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0)\).
Informally:

\((\pi_1(X) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0)\).
Informally:

\((\pi_1(X) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0)\).
Informally:

$\pi_1(X) \neq 0 \Rightarrow \Gamma_\alpha \text{ has torsion} \Rightarrow \Gamma_n/H_n \text{ has torsion} \Rightarrow \pi_1(X_n) \neq 0$.

End of the proof.
End of the proof.

Informally:

\[(\pi_1(X) \neq 0) \Rightarrow (\Gamma_\alpha \text{ has torsion}) \Rightarrow (\Gamma_n/H_n \text{ has torsion}) \Rightarrow (\pi_1(X_n) \neq 0).\]
Theorem ♣

Let $X_n \to X$, and $\Gamma_n \to Iso(X_n)$ acting almost transitively. If X is a topological manifold, then X is a nilpotent Lie group with a sub-Finsler metric. For large enough n, there are subgroups $\Lambda_n \leq \pi_1(X_n, x_n)$ with surjective homomorphisms

$$\Lambda_n \to \pi_1(X, x).$$

Corollary

If Y_n is a sequence of d-dimensional manifolds with $Ric(Y_n) \geq -1$ and $diam(Y_n) \to 0$, then, up to subsequence, the sequence of universal covers converge to a simply connected nilpotent Lie group of dimension $\leq d$, equipped with a left invariant Riemannian metric.
“Easy” questions.

Theorem ♠
Let $X_n \to X$, and $\Gamma_n \to \text{Isom}(X_n)$ acting almost transitively. If X is a topological manifold, then X is a nilpotent Lie group with a sub-Finsler metric. For large enough n, there are subgroups $\Lambda_n \leq \pi_1(X_n, x_n)$ with surjective homomorphisms

$$\Lambda_n \to \pi_1(X, x).$$

Question
Which nilpotent Lie groups can arise as limits of almost homogenous spaces?

Question
Can we replace Λ_n in Theorem ♠ by $\pi_1(X_n, x_n)$, just like in the compact case?
Non-manifold case.

Theorem

Let $X_n \to X$, and $\Gamma_n \to Iso(X_n)$ acting almost transitively. If X is a topological manifold, then X is a nilpotent Lie group with a sub-Finsler metric. For large enough n, there are subgroups $\Lambda_n \leq \pi_1(X_n, x_n)$ with surjective homomorphisms

$$\Lambda_n \to \pi_1(X, x).$$

Hard Question?

Does the lower semicontinuity of π_1 hold when X is semilocally simply connected, but not a manifold?