1. (3 points)

 (a) Find \(y' \) if \(y = 9\sqrt{x} \sin x \).

 (b) Find \(y' \) if \(y = \frac{\sec x}{6 + \tan x} \).

 (c) Compute the limit. Justify your answer!

 \[
 \lim_{x \to 0} \frac{\sin 5x}{\sin 7x}
 \]
2. (4 points)

(a) Find $f'(t)$ if $f(t) = \tan(e^6t) + e^{\tan 6t}$.

(b) Find an equation of the tangent line to the curve $y = \sin(\sin x)$ at $(3\pi, 0)$.
3. (3 points) Find y' by implicit differentiation.

(a) $8x^2 + 7xy - y^2 = 2$

(b) $e^y \cos(x) = 6 + \sin(xy)$
4. (Bonus 2 points) Find $F'(\theta)$ if $F(\theta) = \arcsin\left(\sqrt{\sin(7\theta)}\right)$.