Exam next W: 1/28
1.1-1.10, 2.1-2.3 (today)

- review sheet posted
- practice exams

HW sets for this week will be posted early

Link to old exams: ignore determinants, LU decomposition
will post one with only stuff we did

- M/T go over exam.
How can you tell if a matrix is invertible?

2×2: check if \(ad-bc \neq 0 \) → if yes, not invertible

\[A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} a & -b \\ -c & a \end{pmatrix} \]

if no, invertible, and

Bigger matrices: it's more complicated.

13 ways to tell. (§2.3)
For a given \(n \times n \) matrix \(A \), all of the following are all true, or all are false:

1) \(A \) is invertible

2) \(A \) is row-equivalent to \(I_n \), the identity
 (row reduction on \(A \) leads to \(I_n \))

3) \(A \) has \(n \) pivots

4) \(A\hat{x} = \hat{0} \) has only the solution \(\hat{x} = \hat{0} \).

5) columns are linearly independent

6) the transformation determined by \(A \) is one-to-one

7) \(A\hat{x} = \hat{b} \) has at least one solution for every \(\hat{b} \)

8) columns of \(A \) span \(\mathbb{R}^n \)

9) the transformation given by \(A \) is onto
10) there is an \(nxn \) \(C \) so \(CA = In \)

11) there is an \(nxn \) \(D \) so \(AD = In \).

12) \(A^T \) is invertible

\[
13) \det A \neq 0 \quad (\text{we only know this for } 2 \times 2)\]

- Understanding why these are the same is good
 review: how do these fit together?

- Some tests will be easier for certain matrices.

\[
\text{\textbullet\quad if you know } A \text{ is invertible (check by row reduction)
 you know all these other things too.}\]

\[
\text{\textbullet\quad This is the most important: for example, it tells you that if
 the transformation } A \text{ is one-to-one, it is onto!}
 (\text{THIS IS SPECIFIC TO SQUARE MATRICES})
\]
We won't prove it.

Let's just think through an example and see that everything makes sense.

\[A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \quad \text{ad-bc=0} \]

1) Not invertible!

\[\text{ad-bc} = (1)(4)-(2)(2) = 0 \]

[didn't go through this in lecture, but maybe it's useful]

2) \(\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \). Can't get to I!

Remember, if you could,

\[\begin{pmatrix} 1 & 2 & | & 0 \\ 2 & 4 & | & 0 \end{pmatrix} \]

would you reduce to \[[I \mid B] \].

3) \(\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \) Only one pivot!

4) \(A\hat{x} = 0 \) has only 0 sol.

Nope! \(x_2 \) is free \(x_1 = -2x_2 \) eg. \((-2, 1) \)

\((2, 4)(-2) \).
5) Columns of A linearly map.

Nope! We just found a dependence.

\[-2 \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{4} \end{array} \right) + 1 \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{4} \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right).\]

So not independent.

6) $x \mapsto Ax$ onto one-to-one.

Nope! This doesn't work.

\[
\left(\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array} \right) \left(\begin{array}{c} -2 \\ 1 \end{array} \right) \rightarrow 0: \text{we already found a solution.}
\]

7) $Ax = \vec{b}$ at most one sol for every \vec{b}.

Nope! Two sols for $\vec{b} = 0$.

\[
\left(\begin{array}{c} 0 \\ 0 \end{array} \right), \left(\begin{array}{c} -1 \\ 1 \end{array} \right).
\]

(in fact, infinitely many: $\hat{x} = s \left(\begin{array}{c} -1 \\ 1 \end{array} \right)$)
8) columns span \(\mathbb{R}^n \).

nope!

\[
\begin{pmatrix}
1 & 2 \\
2 & 4
\end{pmatrix} \Rightarrow \begin{pmatrix}
0 & 2 \\
0 & 0
\end{pmatrix} \quad \text{no pivot in 2nd row}
\]

the span is just a line.

9) \(x \mapsto Ax \) on-to? \((\text{same thing as columns span})\)

no: the image is just multiples of \(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \).

10) there's \(n \times n \ C \) so \(CA = I \). no!

why?

11) there's \(n \times n \ D \) so \(AD = I_n \). no!

why? \(AD = [A\vec{d}_1, A\vec{d}_2] \), each column is a linear combo of the cols of \(A \).

but \(\begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \) isn't. so we can't even find \(D \) with \(AD = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \), much less \(I_d \).
in terms of linear transformations

\[
\begin{pmatrix}
1 & 2 \\
2 & 4
\end{pmatrix}
\begin{pmatrix}
1 \\
0
\end{pmatrix} =
\begin{pmatrix}
1 \\
2
\end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 2 \\
2 & 4
\end{pmatrix}
\begin{pmatrix}
1 \\
3
\end{pmatrix} =
\begin{pmatrix}
7 \\
14
\end{pmatrix}
\]

... all on this line!

No way there can be a

```
mirror transformation, because everything
ends up on a single line.
```