- Office hrs this week: M 10-11
 W 10-11
 (or email me; some other time W)

- HW 4.4.14 fixed in pdf

- Quiz W: 4.3, 4.4, 4.5

- Attendance sign-in today!
Using coordinates

You have a vector space V and a basis $B = \{ \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3 \}$.

Want to know if \mathbf{x} (in V) is a combo of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

What do: write down $[\mathbf{x}]_B$, $[\mathbf{v}_1]_B$, $[\mathbf{v}_2]_B$, $[\mathbf{v}_3]_B$.

Actual vectors in \mathbb{R}^3.

Check $[\mathbf{x}]_B$ is combo of $[\mathbf{v}_1]_B$, $[\mathbf{v}_2]_B$, $[\mathbf{v}_3]_B$.

If it is, \mathbf{x} is combo of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$, with same weights!

Laguerre polynomials.

- $\mathbf{v}_1(t) = 1$
- $\mathbf{v}_2(t) = 1 - t$
- $\mathbf{v}_3(t) = 2 - 4t + t^2$

Given the polynomial $\mathbf{x}(t) = t^2$.

Write as combo of \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3.

These are vectors in \mathbb{P}_2.

A basis for \mathbb{P}_2 is $1, t, t^2$.

In basis, want $c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$\mathbf{v}_1|_B$, $\mathbf{v}_2|_B$, $\mathbf{v}_3|_B$, $[\mathbf{x}]_B$.
this is just a linear system!

\[
\begin{bmatrix}
1 & 1 & 2 & 0 \\
0 & -1 & -4 & 0 \\
0 & 0 & 1 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -4 \\
0 & 0 & 1 & 1
\end{bmatrix}
\]

\begin{align*}
c_1 &= 2 \\
c_2 &= -4 \\
c_3 &= 1.
\end{align*}

Check:

\begin{align*}
2(1) + (-4)(1-t) + (1)(2 - 4 + t^2) \\
= 2 - 4 + t + 2 - 4 + t^2 \\
= t^2
\end{align*}
The row space of a matrix & rank

If A is an $m \times n$ matrix, then the row space of A is the subspace of \mathbb{R}^m spanned by the rows of A.

e.g. $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$, Row $A = \text{span} \left\{ \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 6 \end{pmatrix} \right\}$

(in \mathbb{R}^3).

How to find it

Do row reduction on A until it's echelon form (don't need to call echelon form B).

A basis for the row space of A is given by nonzero rows of B. (not A)

Another way:

note: Row A is the same thing as $\text{Col}(A^T)$!

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \]

\[\text{Row} \ A = \text{span} \left\{ \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \right\} = \text{Col} \ A^T. \]
Example:

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \text{ find Row } A, \text{ Col } A, \text{ Nul } A \]

(give a basis)

Once we get \(A \) into rref form, can find all 3!

\[\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \]

\(B = \text{rref}(A) \).

Row \(A = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \right\} \) (rows of \(B \))

Col \(A = \text{span} \left\{ \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} \right\} \) (pNof cols)

\(\text{Nul } A = \text{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \right\} \)

\[\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} \]

\[A\vec{x} = 0 \rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \]

\[x_1 = 5 \\
\begin{cases} x_2 = -25 \\ x_3 = 5 \end{cases} \text{ is true} \]
Notes

1. putting A in echelon form is enough to find Col A, Row A

2. for Nul A, need to use rref.

3. things in the basis of Col A are a bunch of cols of A.
 The other ones are less similar.
Definition

- The rank of A is the dimension of the column space of A.

Rank-nullity theorem (fundamental thm of linear algebra)

- $\text{dim Row } A = \text{dim Col } A$ (always!)
 \[\text{rk } A \leq \text{rank} \]

- $\text{rk } A + \dim \text{Nul } A = n$ (where A is an $m \times n$ matrix)

Why?
- row A has a basis vector for every pivot in echelon form
 (since every nonzero row has a pivot)
- col A has a basis vector for every pivot: basis is the pivot cols.
 \rightarrow so dimension of each one is equal to number of pivots.
- nul A has a basis vector for each free variable.

 the number of free variables = (number of cols) - (pivot columns)

 \[n - \text{rk } A \]

so \[\dim \text{Nul } A + \text{rk } A = n. \]
How to use it.

\[A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \end{pmatrix} \]

What's \(\dim \text{Nul} \ A \)? (What's \(\dim \) of set of sols to \(A \mathbf{x} = \mathbf{0} \)?)

\(\text{col} \ A = \text{span} \left\{ \frac{1}{2} \right\} \; \text{and all multiples of} \; \left(\frac{1}{2} \right) \).

\[\text{so} \; \dim \; \text{col} \ A = 1 \]

\[\dim \; \text{Nul} \; A = 3 \; \text{c} \; \# \text{cols} - \dim \; \text{col} \ A. \]

\[\text{can a} \; 6 \times 9 \; \text{matrix have 2-dimensional nullspace?} \]

\[\dim \; \text{Nul} \; A + \dim \; \text{col} \; A = 9 \]

\[\text{so if Nul} \; A \; \text{is 2-dim}, \; \text{Col} \; A \; \text{is 7-dim!} \]

but Col A is a subspace of \(\mathbb{R}^6 \); (each col has six entries)

\[\text{so dimension is at most 6, can't be 7.} \]

so Nul A can't be 2-dim (must be at least 3-dim)

in other words... a system of 6 equations in 9 variables.

must have at least 3-dim set of solutions.
"Application"

A scientist has 40 eqns in 42 variables.

found two linearly indep solutions to $A\vec{x} = \vec{0}$, and there are no others.

Does $A\vec{x} = \vec{b}$ have a solution for any \vec{b}?

dim Nul $A = 2$, since there are two independent sols.

Theorem says: dim Col $A = 40$. (42 - 2)

so the columns span \mathbb{R}^{40}!

\Rightarrow column space is \mathbb{R}^{40}.

$\Rightarrow A\vec{x} = \vec{b}$ always has a sol.