Announcements

- next quiz will be a take-home; stay tuned.

- we'll have a full lecture on W to finish 6.5 & 6.6, then do some general review if there's time.

- please do your course evals! you should have gotten an email already.
A set of vectors \(\vec{v}_1, \ldots, \vec{v}_n \) is called **orthonormal** if the vectors are all orthogonal, and length 1.

→ it's easy to turn an orthogonal set into an orthonormal set: just divide each one by its length.

\[
\vec{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \vec{x}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]

orthogonal. but \(\|\vec{x}_1\| = \sqrt{1^2+0^2+1^2} = \sqrt{2} \)

\(\|\vec{x}_2\| = 1 \).

\[
\vec{v}_1 = \frac{\vec{x}_1}{\|\vec{x}_1\|} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} \quad \text{and} \quad \vec{v}_2 = \frac{\vec{x}_2}{\|\vec{x}_2\|} = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} \text{ is orthonormal.}
\]
If U is a matrix (mxn), with orthonormal cols, then $U^TU = nnx$ identity matrix.

\[
U = \begin{pmatrix}
\frac{1}{\sqrt{2}} & 0 \\
0 & 1 \\
\frac{1}{\sqrt{2}} & 0 \\
\end{pmatrix}
\]

\[
U^TU = \begin{pmatrix}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
\frac{1}{\sqrt{2}} & 0 \\
0 & 1 \\
\frac{1}{\sqrt{2}} & 0 \\
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
\]

Fact: If $\hat{u}_1, \ldots, \hat{u}_n$ is an orthonormal basis for a subspace $W \subset \mathbb{R}^m$ (e.g. \hat{u}_1, \hat{u}_2, basis for plane in \mathbb{R}^3) another formula for projection:

\[
proj_w \hat{x} = (U(U^T))^T \hat{x}
\]

where U is a matrix with basis vector as columns.

Note: If U is $m \times n$, then U^TU is nnx identity but UU^T is $m \times n$, not identity! Don't mix them up! If U is square nxn, UU^T is identity too.
Gram-Schmidt orthonormalization.

input: basis for a subspace \(\mathbb{R}^n \)
output: orthonormal basis for same subspace
which you can use in our formulas.

\[
\begin{align*}
\text{2D example.} \\
\vec{x}_1 &= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
\vec{x}_2 &= \begin{pmatrix} 1 \\ 2 \end{pmatrix}
\end{align*}
\]

to start, take original vector and don't change it.

\[
\vec{v}_1 = \vec{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]
write \(\vec{x}_2 \) as \(\vec{x}_2^\parallel + \vec{x}_2^\perp \)
__parallel to \(\vec{x}_1 \) __perp to \(\vec{x}_1 \); use as 2nd basis vector.

\[
\begin{aligned}
\vec{v}_2 &= \vec{x}_2 - \frac{\vec{x}_2 \cdot \vec{x}_1}{\vec{x}_1 \cdot \vec{x}_1} \vec{x}_1 \\
&= \vec{x}_2 - \frac{1 \cdot 1}{1 \cdot 1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
&= \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
&= \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}
\end{aligned}
\]

\[
\vec{u}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

\[
\vec{u}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}
\]
to get an orthonormal basis: \(\vec{u}_1, \vec{u}_2 \).
In general, say you're handed $\hat{x}_1, \ldots, \hat{x}_n$ basis for $U \subset \mathbb{R}^m$.

(eg $m=3$, $n=2$: a plane in \mathbb{R}^3)

take

Step 1: get orthogonal basis.

take $\vec{V}_1 = \hat{x}_1$

$$\vec{V}_2 = \hat{x}_2 - \frac{\hat{x}_2 \cdot \hat{V}_1}{\hat{V}_1 \cdot \hat{V}_1} \hat{V}_1$$

(\hat{V}_1 & \hat{V}_2 are orthogonal)

$$\vec{V}_3 = \hat{x}_3 - \frac{\hat{x}_3 \cdot \hat{V}_1}{\hat{V}_1 \cdot \hat{V}_1} \hat{V}_1 - \frac{\hat{x}_3 \cdot \hat{V}_2}{\hat{V}_2 \cdot \hat{V}_2} \hat{V}_2$$

... this is the component of \hat{x}_3 parallel to \hat{V}_1 & \hat{V}_2; after subtracting, what's left is orthogonal to both.

(ground picture)

(on page 357)

Step 2:
the \hat{v}_i's are an orthogonal basis, but not orthonormal.

an orthonormal basis is given by

$$\hat{u}_1 = \frac{\hat{v}_1}{||\hat{v}_1||}$$

...

$$\hat{u}_2 = \frac{\hat{v}_2}{||\hat{v}_2||}$$
Example:

\[\begin{pmatrix}
1 \\
0 \\
2
\end{pmatrix}, \begin{pmatrix}
3 \\
1 \\
5
\end{pmatrix}, \begin{pmatrix}
1 \\
-2 \\
3
\end{pmatrix}\]

basis for a 3-dim subspace of \(\mathbb{R}^4\)

\[\hat{v}_1 = \hat{x}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}\]

\[\hat{v}_2 = \hat{x}_2 - \frac{\hat{x}_2 \cdot \hat{v}_1}{\hat{v}_1 \cdot \hat{v}_1} \hat{v}_1 = \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix} - \frac{18}{6} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}\]

\[\hat{v}_3 = \hat{x}_3 - \frac{\hat{x}_3 \cdot \hat{v}_1}{\hat{v}_1 \cdot \hat{v}_1} \hat{v}_1 - \frac{\hat{x}_3 \cdot \hat{v}_2}{\hat{v}_2 \cdot \hat{v}_2} \hat{v}_2 = \begin{pmatrix} -2 \\ 3 \\ 4 \end{pmatrix} - \frac{12}{6} \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}\]

\[\hat{u}_1 = \frac{\hat{v}_1}{||\hat{v}_1||} = \begin{pmatrix} 1/\sqrt{6} \\ 0 \\ 2/\sqrt{6} \end{pmatrix}, \hat{u}_2 = \frac{\hat{v}_2}{||\hat{v}_2||} = \begin{pmatrix} -1/\sqrt{6} \\ 0 \\ \sqrt{6} \end{pmatrix}, \hat{u}_3 = \frac{\hat{v}_3}{||\hat{v}_3||} = \begin{pmatrix} -1/\sqrt{6} \\ -2/\sqrt{6} \\ 1/\sqrt{6} \end{pmatrix}\]

to get an orthonormal basis:
QR factorization

if A is $m \times n$, lin indep cols. then can write

$A = QR$ where:

- Q $m \times n$, orthonormal cols.
- R $n \times n$, upper triangular.

cols of Q = result of Gram-Schmidt on cols of A.

$R = Q^T A$. (Just multiply it out.)

this is sort of similar to LU decomposition and simplifies some calculations. Whereas LU decomposition "remembers" how do to do row reduction, QR factorization "remembers" how to do Gram-Schmidt.