A Simpler Encoding of Indexed Types

Yinsen Zhang
Department of Computer Science and Engineering
The Pennsylvania State University
USA
yqz5714@psu.edu

Abstract
In functional programming languages, generalized algebraic data types (GADTs) are very useful as the unnecessary pattern matching over them can be ruled out by the failure of unification of type arguments. In dependent type systems, this is usually called indexed types and it’s particularly useful as the identity type is a special case of it. However, pattern matching over indexed types is very complicated as it requires term unification in general. We study a simplified version of indexed types (called simpler indexed types) where we explicitly specify the selection process of constructors, and we discuss its expressiveness, limitations, and properties.

CCS Concepts • Software and its engineering → Language features;

Keywords inductive types, indexed types, type theory, dependent types, functional programming, generalized algebraic data types

ACM Reference Format:

1 Introduction
Correct-by-construction data structures are pleasant to work with, such as well-typed and well-scaled syntax trees [Alais et al. 2017]. A key aspect of correct-by-construction data structures is that they carry value-level information in their types. We start from two simple instances of such data structures: the finite set type and the sized vector type, which are base on the general notion of indexed types:

\[
\begin{align*}
\text{data } \text{Fin} & : \mathbb{N} \rightarrow \text{Type} \\
\text{fzero} & : \forall \mathbb{N} \rightarrow \text{Fin} \; (\text{suc} \; n) \\
\text{fsuc} & : \forall \mathbb{N} \rightarrow \text{Fin} \; n \rightarrow \text{Fin} \; (\text{suc} \; n) \\
\text{data } \text{Vect} & : (\mathbf{A} : \text{Type} \; \ell) : \mathbb{N} \rightarrow \text{Type} \; \ell \\
\text{[]} & : \mathbf{A} \; 0 \\
\text{_<:} & : \forall \mathbb{N} \rightarrow \mathbf{A} \rightarrow \text{Vect} \; \mathbf{A} \; n \rightarrow \text{Vect} \; \mathbf{A} \; (\text{suc} \; n)
\end{align*}
\]

The indices of types are the parameters at the right-hand-side of the colons in the signatures of inductive types, which can be specialized by constructors. The two constructors of \text{Fin} specify the index as \text{suc} \; n, so when pattern matching over \text{Fin zero} requires no clauses. The algorithm for selecting constructors is a process of term unification, extracting a most-general-unifier and apply that to the rest of the telescope. For each constructor, we unify the type arguments with the indices it specifies, and there are three potential results [Cockx et al. 2014a, §2.1].

- Success positively – the constructor matches.
- Success negatively – the constructor does not matches.
- Failure – cannot decide, pattern matching cannot be performed.

Users will have to understand the error messages with unification failures, which is an accidental complexity brought into dependent type systems. The implementation of the unification algorithm also affects the selection of constructors.

We propose an alternative syntax for indexed types. First, for inductive types without indices, we use a Haskell-style syntax to describe its arguments, and we allow bindings in the parameters since we are working with dependent types:

\[
\begin{align*}
\text{data } \mathbb{N} & : \mathbf{U} \\
\text{data } \text{List} & : (\mathbf{A} : \mathbf{U}) : \mathbf{U} \\
\text{[} \text{zero} & \text{]} \\
\text{[} \text{suc} \; (x : \mathbb{N}) & \text{]} \\
\text{[} \text{cons} \; (x : \mathbf{A}) \; (xs : \text{List} \; \mathbf{A}) & \text{]}
\end{align*}
\]

Then, we allow the constructors to perform a pattern matching over the type of the parameters. For instance, we define the sized vector type using the following syntax:

\[
\begin{align*}
\text{data } \mathbb{N} & : \mathbf{U} \\
\text{data } \text{List} & : (\mathbf{A} : \mathbf{U}) : \mathbf{U} \\
\text{[} \text{zero} & \text{]} \\
\text{[} \text{suc} \; (x : \mathbb{N}) & \text{]} \\
\text{[} \text{cons} \; (x : \mathbf{A}) \; (xs : \text{List} \; \mathbf{A}) & \text{]}
\end{align*}
\]

This piece of code is written in Agda [Norell 2009]. The types and functions are in blue while constructors are in green. There are other pieces of code written in Aya [Aya developers 2021], where types are in green and constructors are in purple. In §2, we use the latter coloring.
We propose the new syntax because the term unification problem may become higher order (like in \[Cockx et al. 2016, §1\]). Similarly the unification is related to the injectivity of type constructors, see the discussion in \[Cockx et al. 2016, §1\]).

This pattern matching is not a traditional pattern matching, say, it does not need to be covering (although in the \texttt{Vec} example it is) and it can contain seemingly unreachable patterns (like duplicated patterns). Instead, they represent the selection process of constructors directly. The type checking of pattern matching consists of two steps: the well-typedness of patterns and the exhaustiveness of the patterns. We exemplify the type checking of our encoding of indexed types by describing the pattern matching over \texttt{Vec} \(n\) \(n\). First, it tries to match the terms \(\mathbb{N}, n\) with the patterns \(A, \text{zero}\) and \(A, \text{suc} n\). The pattern matching has three potential results, similar to the term unification problem:

- Success positively – the patterns are matched, this constructor will be available (needs to be matched).
- Success negatively – the patterns do not match, this constructor is not available (does not need to be matched).
- Failure – the pattern matching gets stuck, pattern matching cannot be performed.

However, pattern matching is a basic construct in dependent type systems, and it is decidable and terminating – unlike the general term unification problem, where we normally give up higher-order cases to avoid undecidability. It is also more friendly to general users because they are required to understand one concept less.

Another example is the finite set type:

\[
\text{data Fin} \ (n : \mathbb{N}) : \mathcal{U} \\
\mid \text{suc} \ n \Rightarrow \text{fsuc} (x : \text{Fin} \ n)
\]

1.1 Problematic indexed types

We propose the new syntax because the term unification problem generated by general indexed types could be very complicated. Here are some examples of indexed types in Agda that generate such unification problems:

\[
\text{data Univ : Type}_0 \rightarrow \text{Type}_1 \text{ where} \\
\text{univ : } \forall \ u \rightarrow \text{Univ} (u \rightarrow \mathbb{N}) \\
\text{data Higher : } (\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \text{Type}_0 \text{ where} \\
\text{higher-suc : Higher suc} \\
\text{higher-pred : Higher pred} \\
\text{higher-misc : Higher } (\lambda \ x \rightarrow 2 + x - 3)
\]

We cannot perform pattern matching on the type \texttt{Univ Bool} since Agda cannot unify \texttt{Bool} and \(\mathbb{N}\) (this unification problem is related to the injectivity of type constructors, see the discussion in \[Cockx et al. 2016, §1\]). Similarly the unification problem may become higher order (like in \texttt{Higher} – neither \texttt{Higher suc}, \texttt{Higher pred}, \texttt{Higher} (\(\lambda \ x \rightarrow 2 + x - 3\)) could be pattern matched against!), generating more confusing instances.

These examples are impossible to construct with simpler indexed types. With the proposed syntax, we could avoid not only implementing such a complicated unification algorithm, but also explaining these unification failures in error messages.

1.2 Contributions

- We present the syntax (§2.1) and the type checking algorithm (§2.3) for simpler indexed types in §2.
- We discuss their limitations (§3.1), provide a translation of simpler indexed types to general indexed types (§3.2), and discuss the compilation of simpler indexed types (§3.3) in §3.
- We explore potential extension to simpler indexed types (§4.1) and compare it with similar work (§4.2) in §4.

2 Formalization of simpler indexed types

In this section, we describe the core language syntax and the type checking of simpler indexed types. The coverage checking can be adapted from any other dependent type systems with indexed types by replacing the term unification with pattern matching, so we assume the existence of a suitable coverage check.

2.1 Core language syntax

The syntax of terms is presented in Figure 2.1. It has spine-normal fully-applied applications on "definitions" (including types \(\text{D}\), constructors \(c\), and functions definitions \(f\)). Normal constructs such as \(\lambda\)-abstraction and the \(\Pi\)-type are also available. \(\Rightarrow\) is used in \(\lambda\)-abstractions instead of dots for consistency with function definitions and pattern matching clauses. We use \(\overline{u}\) to denote a list of expressions, and \(\emptyset\) when the list is empty.

\[
x, y ::= \text{variable names} \\
A, B, u, v ::= f \overline{u} \quad \text{full application to functions} \\
| x \overline{u} \quad \text{application to references} \\
| \text{D} \overline{u} \quad \text{fully applied inductive type} \\
| c \overline{u} \quad \text{fully applied constructor} \\
| (x : A) \rightarrow B \quad \Pi\text{-type} \\
| \lambda x \Rightarrow B \quad \text{lambda abstraction}
\]

Figure 2.1. Syntax of terms

Case-split expressions can be encoded as functions and can be easily added to our type theory, but they are unrelated to simpler indexed types. Therefore, we omit them. We will have two syntactic sugars for the \(\Pi\)-type: \(A \rightarrow B\) for \((x : A) \rightarrow B\), and \(\lambda \rightarrow B\) for \((x_1 : A_1) \rightarrow (x_2 : A_2) \rightarrow \cdots \rightarrow (x_n :
A Simpler Encoding of Indexed Types

\(A_n \rightarrow B \) where \(\Delta = (x_i : A_i)_{i \in [1..n]} \). The latter is only used in §3.2.

The syntax for definitions, contexts and signatures is defined in Figure 2.2. A signature is a list of declarations and a context is a list of bindings. Constructors are with or without a list of patterns. The variables in the same pattern are assumed to be distinct.

\[
\begin{align*}
\Gamma, \Delta, \Theta &::= x_i : A_i & \text{context} \\
decl &::= \text{data } D \Delta \text{ cls } & \text{simpler indexed type} \\
| \text{func } f \Delta : A \text{ cls } & \text{function definition} \\
\text{cons} &::= p \Rightarrow c \Delta & \text{pattern matching constructor} \\
| c \Delta & \text{constructor} \\
\text{cls} &::= q \Rightarrow u & \text{pattern matching clause} \\
\text{vars} &::= x & \text{catch-all patterns} \\
\text{impossible} & \text{absurd patterns} \\
\Sigma &::= \text{decl} & \text{signature}
\end{align*}
\]

\textbf{Figure 2.2.} Syntax of signature and declarations

We will borrow some notational convention from [Cockx and Abel 2018, §3.2]\(^2\): \([u[v/x]]\) for substituting occurrences of \(x \) with \(v \) in term \(u \). We use \([u[\bar{v}/\bar{x}]]\) to denote a list of substitutions applied sequentially to the term \(u \). Substitution objects are denoted as \(\sigma \). We will assume the substitution operation defined on terms, patterns, and substitutions.

In the typing rules in §2.3, we will omit the vertical bars in \textit{cons} and \textit{cls} which are intended to separate the clauses and constructors.

\textbf{2.2 Operations on terms}

We also need some operations on terms and patterns. All of them are defined by induction on the syntax. We define \(\text{vars}(\Delta) \) to compute the list of variables in \(\Delta \):

\[
\begin{align*}
\text{vars}(\emptyset) &::= \emptyset \\
\text{vars}(x : A, \Delta) &::= x, \text{vars}(\Delta)
\end{align*}
\]

We define \(\text{vars}(p) \) to compute the list of bindings in pattern \(p \) and \(\text{vars}(\bar{p}) \) to gather all the bindings in the patterns \(\bar{p} \). This operation requires the well-typedness of the patterns because we need the types of the bindings. We store these types into the patterns to allow accessing them in this operation:

\[
\text{vars}(x : A) ::= x : A \\
\text{vars}(\emptyset) ::= \emptyset \\
\text{vars}(c \bar{p}) ::= c \text{term}(\bar{p}) \\
\text{vars}(\emptyset) ::= \emptyset \\
\text{vars}(x : A, \bar{p}) ::= x : A, \text{vars}(\bar{p})
\]

We define \(\text{term}(p) \) to compute a term that matches exactly the pattern \(p \) and \(\text{term}(\bar{p}) \) to compute a list of terms matching exactly the patterns \(\bar{p} \). This requires \(p \) to contain no \text{impossible} sub-patterns:

\[
\begin{align*}
term(x : A) &::= x \\
term(c \bar{p}) &::= c \text{term}(\bar{p}) \\
term(\emptyset) &::= \emptyset \\
term(q, p) &::= term(q), \text{term}(\bar{p})
\end{align*}
\]

We define \(\text{matches}(u, p) \) to perform pattern matching, similar to the MATCH and MATCHES operations in [Goguen et al. 2006]. It computes a substitution when the pattern matching success positively and produces \(\bot \) when the pattern matching success negatively. We will also define a version of this operation to match a list of terms with a list of patterns \(\text{matches}(u, \bar{p}) \leftrightarrow \sigma \), similar to \(\text{vars}(\bar{p}) \) and \(\text{term}(\bar{p}) \).

\[
\begin{align*}
\text{matches}(u, x) &\leftrightarrow [u/x] \\
\text{matches}(\emptyset, \emptyset) &\leftrightarrow [] \\
\text{matches}(u, \bar{p}) &\leftrightarrow \sigma \\
\text{matches}(\emptyset, \bar{p}) &\leftrightarrow \bot \\
\text{matches}(c \bar{u}, c \bar{p}) &\leftrightarrow \sigma \\
\text{matches}(c \bar{u}, c \bar{p}) &\leftrightarrow \bot \\
\text{matches}(c_1 \bar{u}, c_2 \bar{p}) &\leftrightarrow \bot \\
\text{matches}(c_1 \bar{u}, c_2 \bar{p}) &\leftrightarrow \bot \\
\text{matches}(\bar{u}, q) &\leftrightarrow \bot \\
\text{matches}(\bar{u}, q) &\leftrightarrow \bot \\
\text{matches}(\bar{u}, (q, \bar{p})) &\leftrightarrow \bot \\
\text{matches}(\bar{u}, (q, \bar{p})) &\leftrightarrow \bot \\
\text{matches}(\bar{u}, \bar{p}) &\leftrightarrow \sigma \\
\text{matches}(\bar{u}, \bar{p}) &\leftrightarrow \sigma' \\
\text{matches}(\bar{u}, \bar{p}) &\leftrightarrow \sigma \cup \sigma'
\end{align*}
\]

\textbf{Figure 2.3.} Pattern matching operation

\textbf{Lemma 2.1.} For all pattern \(p \), \(\text{matches}(\text{term}(p), p) \leftrightarrow \sigma \) and for all list of patterns \(\bar{p} \), \(\text{matches}(\text{term}(\bar{p}), \bar{p}) \leftrightarrow \sigma \). In both formulae, the substitution \(\sigma \) is an identity substitution.

\textit{Proof.} By induction on \(p \). \hfill \Box

\textbf{2.3 Typing rules for terms}

Well-typed terms are formed under the following type checking judgments:

\[
\begin{align*}
\Sigma, \Gamma \vdash \Delta &\text{ is a well-formed context under } \Sigma; \Gamma.
\end{align*}
\]

\textbf{2 Other styles of substitution include} \(u[x \mapsto v] \), \(u[x/v] \), etc. (there is a relevant online discussion at [https://mathoverflow.net/users/7507/kaveh] 2018)
They are grouped by the relevant type formation.

For simplicity, we will omit several things:

- We assume the conversion check between terms – the problem is the same as other dependent type systems, and the strategies used by other systems will apply to ours as well.

- We also have the type-in-type rule to simplify the universe types, and in practical implementations, we could integrate polymorphic universe levels to make the system consistent.

- In the implementation of Aya and Arend, we also have the sigma type and records, but we omit them here for simplicity.

Rules related to the Π-type.

\[
\begin{align*}
\Gamma, x : A & \vdash b : B \\
\Gamma, x : A, y : B & \vdash c : C
\end{align*}
\]

By induction on context \(\varphi\).

Proof.

In the \textsc{IxCall} rule, we perform a pattern matching between the type arguments and the patterns in the constructor to make sure the availability of the selected constructor, and apply the resulting substitution to the parameters of the constructor as they can access the patterns according to the rules in Figure 2.5. In contrast, the \textsc{ConCall} rule does not perform pattern matching and the constructor is directly available. The differences between \textsc{IxCall} and \textsc{ConCall} include a successful matches\((u, p)\) operation and an extra substitution applied on \(\Delta\).

2.4 Signature well-formedness

A well-formed signature consists of a list of well-typed declarations. We can think of the whole type checking algorithm as a signature formation process.

To check function definitions and pattern matching constructors, we first need to type check the patterns and elaborate the pattern matching clauses. The rules of pattern type checking, similar to the operations in §2.2, have two versions:

- \(\Sigma; \Gamma \vdash \Psi : A \to \Theta\) type-checking a pattern \(\Psi\) against a type \(A\).

- \(\Sigma; \Gamma \vdash \lambda \Psi : \Lambda \to \Theta\) type-checking patterns \(\Psi\) against a context \(\Lambda\).

These rules are defined in Figure 2.5. They produce a context \(\Theta\) containing all of the bindings in the give pattern(s).

Rules for one pattern.

\[
\begin{align*}
\Sigma; \Gamma \vdash x : A & \to x : A \\
\Sigma; \Gamma \vdash x : A & \to x : A \\
\Sigma; \Gamma \vdash b : B & \to b : B
\end{align*}
\]

Follow the rules and match \(\Delta\).

Rules for a list of patterns.

\[
\begin{align*}
\Sigma; \Gamma, x : A & \to \Theta \\
\Sigma; \Gamma \vdash \lambda \Psi : \Lambda \to \Theta
\end{align*}
\]

Follow the rules and match \(\Delta\).
A Simpler Encoding of Indexed Types

\[
\begin{align*}
\Sigma; \Gamma \vdash \overline{p} : \Delta & \Rightarrow \Theta \\
\Sigma; \Gamma, \Lambda, \Theta \vdash u : A[\text{term}(\overline{p})/\text{vars}(\Delta)] \\
\Sigma; \Gamma \vdash \text{clause}(\overline{p} : \Delta, u : A) \\
\Sigma; \Gamma \vdash (\text{clause}(\overline{p} : \Delta, c : \Delta_c)) \nu_{(\Delta, \ell) : \text{cons}} \\
\Sigma; \Gamma \vdash (\text{cons}(\Delta, c)) \nu_{(\Delta, \ell) : \text{cons}} \\
\Sigma, \text{data} \ D \ : \ A \ c \ ; \ \Gamma \vdash \\
\Sigma, \text{func} \ f \ : \ A \ c f ; \ \Gamma \vdash
\end{align*}
\]

Figure 2.6. Pattern matching structures

Figure 2.7. Well-formedness of signature \(\Sigma\)

Then, we define the rules for type checking pattern matching structures as in Figure 2.6 using the operation defined in Figure 2.5.

With them, we could define the type checking of function definitions and simpler indexed types, and form signature by the rules \(\Sigma; \Gamma \vdash\) in Figure 2.7. The declarations are checked one after another so latter functions can depend on former ones. By that, we will lose induction-recursion [Dybjer 2003] and induction-induction [Forsberg and Setzer 2010], and we consider it a potential future work.

3 Metatheory of simpler indexed types

In this section, we discuss the limitations of simpler indexed types by examples and provide a complete and sound translation from simpler indexed types to general indexed types.

3.1 Limitations and workarounds

Many useful indexed types cannot be written as simpler indexed types. For instance, as a common illustration of the convenience brought by indexed types, the normalizer and the syntax tree for an expression language with natural numbers and booleans can be defined as a general indexed type in Agda [Norell 2009].

The syntax looks like this. We first define the type \(\text{Term}\) as a type indexed by another type, which is the type of the evaluation result of each syntax variant. In each constructor, we specialize this type.

```
data Term : Type0 → Type0 where
  nat : N → Term N
  succ : Term N → Term N
  bool : Bool → Term Bool
```

Then, we define its normalize function, which takes an instance of \(\text{Term}\) and return an instance of type \(A\). The type guarantees that there will never be ill-typed terms like \(\text{suc} (\text{bool} x)\).

```
normalize : Term A → A
normalize (nat x) = x
normalize (bool x) = x
normalize (suc x) = suc (normalize x)
normalize (inv b x y) = if (normalize b) then (normalize x) else (normalize y)
```

We cannot encode \(\text{Term}\) as a simpler indexed type because we cannot pattern match on types, so the direct translation will not work – We will need an auxiliary type to help us encoding them:

```
data TermTy : \(\forall \ell \rightarrow \text{U}\) | natT | boolT
  func termTy (x : TermTy) : \(\forall \ell \rightarrow \text{U}\)
  natT ⇒ n
  boolT ⇒ bool boolT
  boolT ⇒ inv (Term boolT)
  A ⇒ case (Term boolT) (Term A) (Term A)
```

Then, we define the type for terms and the normalize function:

```
data Term (n : TermTy) : \(\forall \ell \rightarrow \text{U}\)
  natT ⇒ nat N
  natT ⇒ succ (Term natT)
  boolT ⇒ bool boolT
  boolT ⇒ inv (Term boolT)
  A ⇒ case (Term boolT) (Term A) (Term A)
```

```
funk normalize (t : TermTy) (x : Term t) : termTy t
  natT, nat n ⇒ n
  natT, succ n ⇒ succ (normalize natT n)
  boolT, bool b ⇒ b
  boolT, inv b ⇒ not (normalize boolT b)
  t, case b x y ⇒ ifElse (normalize boolT b) (normalize t x) (normalize t y)
```

In the general case, only when the indices are in canonical constructor form (say, generated by references to parameters of the constructor and applications to constructors) can we translate them into simpler index types. Even though we could use auxiliary types to help us encoding them, there is still one case where this encoding will fail, where the indices contain references to the parameters of the indexed type. The simplest case is the identity type:

```
data Id (A : Type ℓ) (x : A) : A → Type ℓ where
  idp : Id A x x
```

The index being \(x\), a reference to the parameter of \(\text{Id}\), is the essential reason why a general term unification needs to
We could translate simpler indexed types back to general types, so we get the completeness theorem for free.

Proof. First, it indeed returns a specialization of the type D. According to Figure 2.6, types in Δ, are well-typed with references to the bindings in \overline{p}, but not in Δ. These bindings are available in $\text{vars}(\overline{p})$.

According to Figure 2.4, the well-typedness of $\text{D term}(\overline{p})$ requires term(\overline{p}) : Δ, and we know it is true by lemma 2.2.

Theorem (Soundness). The translated constructor needs to be matched if and only if the original constructor needs to be matched.

The translated constructor does not need to be matched if and only if the original constructor does not need to be matched.

The translated constructor cannot be matched if and only if the original constructor cannot be matched.

Proof. This theorem actually requires a bit more information to be well-defined – we have not given the general indexed types typing rules and semantics.

However, since the result of term(\overline{p}) is only generated by applications to constructors and references (by definition), we only need to deal with the unification of these terms, which are quite simple. They should be structurally equivalent to the rules in Figure 2.5.

Restricting the unification problem to this smaller subset makes the soundness theorem provable by induction on the patterns \overline{p}.

Remark 3.2. This translation is also useful in the type checking of the constructors of simpler indexed types. When we have a reference to such constructor without any argument supplied, we could synthesize a type for this reference – and we use the type in definition 3.1.

3.2 Translation to indexed types

We could translate simpler indexed types back to general indexed types. To describe the translation, we define the syntax of general indexed types, which is the output of the translation, in Figure 3.1. We do not have type parameters as they are just special cases of indices.

Now we can start the translation. First, we unify pattern matching constructors with simple constructors. For constructor $c \Delta$ in simpler indexed type $D \Delta$, we translate it into a pattern matching constructor $\text{vars}(\Delta) \Rightarrow c \Delta$.

After that, we could perform the translation of constructors. In other words, we need to construct the type ($^\Delta A$ in Figure 3.1) of the translated constructor.

Definition 3.1. For pattern matching constructor $\overline{p} \Rightarrow c \Delta$, we construct the type of the translated constructor $\text{as vars}(\overline{p}) \Delta \rightarrow D \text{ term}(\overline{p})$.

This type is a pi type consisting of the following major components:

1. $\text{vars}(\overline{p})$: the bindings in the patterns. We turn these bindings into parameters of the translated type.
2. Δ: the constructor parameters. They are typed under the bindings in $\text{vars}(\overline{p})$, so we append the original parameters to the tail of these required bindings.
3. $D \text{ term}(\overline{p})$: the return type. We specialize the indices of D with the terms correspond to \overline{p}. These terms are typed under $\text{vars}(\overline{p})$, which is available in the domain of this pi type.

Theorem (Completeness). Every simpler indexed type can be translated into general indexed types.

Proof. This translation is defined for all simpler indexed types, so we get the completeness theorem for free.

Theorem (Well-typedness). The type of the translated constructor is well-scoped and well-typed.
4 Conclusion

We introduced a simpler encoding of indexed types in dependent type systems. It reuses the pattern matching for constructor selection to avoid exposing the index unification problem to the users. A number of existing indexed types such as Fin and Vect can be encoded in this simpler way, but not all (exceptions include the identity type in Agda [Norell 2009] and the examples in §1.1).

4.1 Future work

We could translate simpler indexed types into an even simpler type theory with only products and coproducts, just like in [Cockx et al. 2018]. This translation requires an algorithm to classify the pattern matching clauses with overlapping parts. This is done in [Cockx et al. 2014b], but in Aya we have a better implementation. We decide to describe such translation after the overlapping pattern classification algorithm is formalized.

We could also have a built-in identity type in the type theory and encode the indexed types with the identity type. The Image type in [Cockx et al. 2018] is a great example:

```haskell
data Image (A B : Type ℓ) (f : A → B) : B → Type ℓ where
  image : ∀ x → Image A B f (f x)

It can be encoded as an inductive type without indices:

data Image (A B : U) (f : A → B) (b : B) : U
  | image (x : A) (p : f x = b)
```

We might be able to define a translation from general indexed types into simpler indexed types with a built-in identity type, and during pattern matching over the encoded types, we perform a rewriting over the identity proofs that we used to encode the indices. By that, we will have a different treatment of the index unification problem, and we could study how it compares to the general indexed types.

This idea (encoding the unification of type indices as a rewriting performed during pattern matching) is similar to the transpX operation discussed in [Vezzosi et al. 2020, §3.2.4, §4] and the “index-fixing” fcoe operation discussed in [Cavallaro and Harper 2019, §4.2], but we are working in a general type theory with any definition of the identity type as long as they support the J operation, including the path type in homotopy type theory [Univalent Foundations Program 2013], the path type in cubical type theories [Cavallaro and Harper 2019; Cohen et al. 2015; Vezzosi et al. 2019], the identity type in intuitionistic type theory [Martin-Löf 1975] (either homogeneous or heterogeneous), and others.

The cubical path type is a preferred choice as it does not depend on any fancy unification mechanism. This means we can develop a type theory expressive enough to discuss indexed types without dependent pattern matching.

Apart from that, we could seek integration with induction-recursion [Dybjer 2003] and induction-induction [Forsberg and Setzer 2010] as mentioned in §2.4.

The compilation technique could be investigated to address the limitation discussed in §3.3.

4.2 Related work

Type families in dependent types can be regarded as an encoding of GADTs [Coquand 1992]. This idea was then put into a simpler type system (H-M) in [Augustsson and Petersson 1994], and was developed further as first-class phantom types in [Xi et al. 2003] and guarded recursive type constructors in [Cheney and Hinze 2003]. [Sheard and Pasalic 2008] used Leibniz-style encoding of equality to reason over the equality among types for building well-typed and well-scoped syntax trees. GADTs are integrated into GHC Haskell in [Vytiniotis et al. 2006].

Indexed types [Zenger 1997] are the generalization of inductive types with type-equality, where values are also allowed to appear as parameters of inductive types. Agda [Norell 2009] and Idris [Brady 2013] have a more ergonomic design of indexed types where the equality relations are made implicit.

In [Cockx et al. 2018], the type-family encoding of the sized vector type is discussed and is directly related to simpler indexed types. However, there are several key advantages of simpler indexed types over the record encoding given in [Cockx et al. 2018]:

- Simpler indexed types have names for the types and constructors. The record encoding anonymizes the type and the constructors, so the error messages are harder to understand.
- The pattern matching in simpler indexed type does not need to be covering. For instance, the simpler indexed type Fin zero is implicitly an empty type, while encoding it as a function requires writing an explicit pattern matching clause zero = ⊥.
- Similar to coverage, pattern matching in simpler indexed types does not need to be structurally recursive. The record encoding uses functions so we need to respect the rules for functions, including persuading the termination checker.

Another work related to the encoding of indexed types is [Chapman et al. 2010, §5], where they propose an encoding similar to the Image example proposed in §4.1 and discuss a potential optimization to indexed types similar to [Cockx et al. 2018]. The advantages of simpler indexed types over [Cockx et al. 2018] still applies to the encoding in [Chapman et al. 2010]. A notable application of indexed types based on [Chapman et al. 2010] is ornaments [Dagand and McBride 2014; Ko and Gibbons 2016].

The proposed feature has been implemented in two systems individually:
• The Arend [Group for Dependent Types and HoTT 2015] proof assistant, an implementation of homotopy type theory with a cubical-flavored interval type.
• The Aya [Aya developers 2021] proof assistant, an experimental implementation of a type theory similar to Arend’s, but with other features such as overlapping and order-independent patterns [Cockx et al. 2014b].

All of the operations (except var(A) – it is too simple to be a class) in §2.2 have a corresponding class in the package org.aya.core.pat in the source code of Aya: vars(p) corresponds to PatTycker, term(p) corresponds to PatToTerm, matches(u,p) corresponds to PatMatcher.

Apart from that, the type checking of terms in Figure 2.4 corresponds to ExprTycker, the type checking of patterns in Figure 2.5 corresponds to PatTycker, and the type checking of declarations in Figure 2.2 corresponds to StmtTycker. The source code of Aya could be retrieved from the link in the corresponding reference entry. The complete normalized example in §3.1 is available at https://github.com/aya-prover/aya-dev/blob/main/base/src/test/resources/success/type-safe-norm. This example in §3.1 is available at https://github.com/aya-prover/aya-dev/blob/main/base/src/test/resources/success/type-safe-norm. The file success/type-safe-norm is a test-case of the Aya type checker.

Acknowledgments. We are grateful to Yu Zhang and Yiming Zhu for their suggestions on the draft version of this paper and Guillaume Allais for their review on an earlier version of this paper. We would also like to thank the anonymous reviewers from the ICFP TyDe workshop for their valuable suggestions on improving the paper.

References

TyDe ’21, August 22, 2021, Virtual Event, Republic of Korea

Yinsen Zhang

